Show simple item record

Effects of crustal field rotation on the solar wind plasma interaction with Mars

dc.contributor.authorMa, Yingjuanen_US
dc.contributor.authorFang, Xiaohuaen_US
dc.contributor.authorRussell, Christopher T.en_US
dc.contributor.authorNagy, Andrew F.en_US
dc.contributor.authorToth, Gaboren_US
dc.contributor.authorLuhmann, Janet G.en_US
dc.contributor.authorBrain, Dave A.en_US
dc.contributor.authorDong, Chuanfeien_US
dc.date.accessioned2014-11-04T16:35:56Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-11-04T16:35:56Z
dc.date.issued2014-10-16en_US
dc.identifier.citationMa, Yingjuan; Fang, Xiaohua; Russell, Christopher T.; Nagy, Andrew F.; Toth, Gabor; Luhmann, Janet G.; Brain, Dave A.; Dong, Chuanfei (2014). "Effects of crustal field rotation on the solar wind plasma interaction with Mars." Geophysical Research Letters 41(19): 6563-6569.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109356
dc.description.abstractThe crustal remnant field on Mars rotates with the planet at a period of 24 h 37 min, constantly varying the magnetic field configuration interacting with the solar wind. Until now, there has been no self‐consistent modeling investigation on how this varying magnetic field affects the solar wind plasma interaction. Here we include the rotation of this localized crustal field in a multispecies single‐fluid MHD model of Mars and simulate an entire day of solar wind interaction under normal solar wind conditions. The MHD model results are compared with Mars Global Surveyor (MGS) magnetic field observations and show very close agreement, especially for the field strength along almost all of the 12 orbits on the day simulated. Model results also show that the ion escape rates slowly vary with rotation, generally anticorrelating with the strength of subsolar magnetic crustal sources, with some time delay. In addition, it is found that in the intense crustal field regions, the densities of heavy ion components enhance significantly along the MGS orbit, implying strong influence of the crustal field on the ionospheric structures. Key Points Model results closely agree with MGS observations Ion escape rates slowly vary with rotation Crustal field has strong influence on the ionospheric structuresen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRotationen_US
dc.subject.otherMarsen_US
dc.subject.otherCrustal Fielden_US
dc.titleEffects of crustal field rotation on the solar wind plasma interaction with Marsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109356/1/grl52074.pdf
dc.identifier.doi10.1002/2014GL060785en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceAcuna, M. H., et al. ( 1999 ), Global distribution of crustal magnetization discovered by the Mars global surveyor MAG/ER experiment, Science, 284, 790 – 793.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2001 ), A 50‐degree spherical harmonic model of the magnetic field of Mars, J. Geophys. Res., 106, 23,197 – 23,208, doi: 10.1029/2000JE001365.en_US
dc.identifier.citedreferenceAcuna, M. H., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279, 1676 – 1680.en_US
dc.identifier.citedreferenceNagy, A., et al. ( 2004 ), The plasma environment of Mars, Space Sci. Rev., 111, 33 – 114.en_US
dc.identifier.citedreferenceModolo, R., G. M. Chanteur, and E. Dubinin ( 2012 ), Dynamic Martian magnetosphere: Transient twist induced by a rotation of the IMF, Geophys. Res. Lett., 39, L01106, doi: 10.1029/2011GL049895.en_US
dc.identifier.citedreferenceMa, Y.‐J., and A. F. Nagy ( 2007 ), Ion escape fluxes from Mars, Geophys. Res. Lett., 34, L08201, doi: 10.1029/2006GL029208.en_US
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.en_US
dc.identifier.citedreferenceMa, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Toth ( 2014 ), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272 – 1286, doi: 10.1002/2013JA019402.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Holmström, H. Nilsson, Y. Futaana, R. Ramstad, M. Yamauchi, E. Dubinin, and M. Fraenz ( 2013 ), Solar cycle effects on the ion escape from Mars, Geophys. Res. Lett., 40, 6028 – 6032, doi: 10.1002/2013GL058154.en_US
dc.identifier.citedreferenceLundin, R., S. Barabash, M. Yamauchi, H. Nilsson, and D. Brain ( 2011 ), On the relation between plasma escape and the martian crustal magnetic field, Geophys. Res. Lett., 38, L02102, doi: 10.1029/2010GL046019.en_US
dc.identifier.citedreferenceLedvina, S. A., Y. J. Ma, and E. Kallio ( 2008 ), Modeling and simulating flowing plasmas and related phenomena, Space Sci. Rev., doi: 10.1007/s11214-008-9384-6.en_US
dc.identifier.citedreferenceKallio, E., J.‐Y. Chaufray, R. Modolo, D. Snowden, and R. Winglee ( 2011 ), Modeling of Venus, Mars, and Titan, Space Sci. Rev., 162 ( 1–4 ), 267 – 307, doi: 10.1007/s11214-011-9814-8.en_US
dc.identifier.citedreferenceNilsson, H., et al. ( 2011 ), Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields, Icarus, 215 ( 2 ), 475 – 484, doi: 10.1016/j.icarus.2011.08.003.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. DeZeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comp. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceToth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceFang, X., M. W. Liemohn, A. F. Nagy, J. Luhmann, and Y. Ma ( 2010 ), On the effect of the martian crustal magnetic field on atmospheric erosion, Icarus, 206, 130 – 138, doi: 10.1016/j.icarus.2009.01.012.en_US
dc.identifier.citedreferenceCrider, D. H., D. Vignes, A. M. Krymskii, T. K. Breus, N. F. Ness, D. L. Mitchell, J. A. Slavin, and M. H. Acuña ( 2003 ), A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data, J. Geophys. Res., 108 ( A12 ), 1461, doi: 10.1029/2003JA009875.en_US
dc.identifier.citedreferenceConnerney, J. E. P., M. H. Acuña, P. J. Wasilewski, N. F. Ness, H. Rème, C. Mazelle, D. Vignes, R. P. Lin, D. L. Mitchell, and P. A. Cloutier ( 1999 ), Magnetic lineations in the ancient crust of Mars, Science, 284, 794 – 798.en_US
dc.identifier.citedreferenceCarlsson, E., et al. ( 2006 ), Mass composition of the escaping plasma at, Icarus, 182, 320 – 328, doi: 10.1016/j.icarus.2005.09.020.en_US
dc.identifier.citedreferenceBrain, D. A., et al. ( 2010 ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206 ( 1 ), 139 – 151, doi: 10.1016/j.icarus.2009.06.030.en_US
dc.identifier.citedreferenceBrain, D. A., J. S. Halekas, R. Lillis, D. L. Mitchell, R. P. Lin, and D. H. Crider ( 2005 ), Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32, L18203, doi: 10.1029/2005GL023126.en_US
dc.identifier.citedreferenceBrain, D. A. ( 2006 ), Mars Global Surveyor measurements of the Martian solar wind interaction, Space Sci. Rev., 126 ( January ), 77 – 112, doi: 10.1007/s11214-006-9122-x.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.