Show simple item record

Evaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict In Vivo Dissolution

dc.contributor.authorTakeuchi, Susumuen_US
dc.contributor.authorTsume, Yasuhiroen_US
dc.contributor.authorAmidon, Gregory E.en_US
dc.contributor.authorAmidon, Gordon L.en_US
dc.date.accessioned2014-11-04T16:35:58Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:58Z
dc.date.issued2014-11en_US
dc.identifier.citationTakeuchi, Susumu; Tsume, Yasuhiro; Amidon, Gregory E.; Amidon, Gordon L. (2014). "Evaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict In Vivo Dissolution." Journal of Pharmaceutical Sciences 103(11): 3416-3422.en_US
dc.identifier.issn0022-3549en_US
dc.identifier.issn1520-6017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109359
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGISen_US
dc.subject.otherGastric Emptyingen_US
dc.subject.otherGastroPlusen_US
dc.subject.otherIn Vitro / in Vivo Correlations ( IVIVC ); Gastrointestinal Transiten_US
dc.subject.otherIn Vitro Modelsen_US
dc.subject.otherTransit Timeen_US
dc.subject.otherDissolution Rateen_US
dc.subject.otherDissolutionen_US
dc.subject.otherASDen_US
dc.titleEvaluation of a Three Compartment In Vitro Gastrointestinal Simulator Dissolution Apparatus to Predict In Vivo Dissolutionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109359/1/jps24112.pdf
dc.identifier.doi10.1002/jps.24112en_US
dc.identifier.sourceJournal of Pharmaceutical Sciencesen_US
dc.identifier.citedreferenceMcFarland JW, Avdeef A, Berger CM, Raevsky OA. 2001. Estimating the water solubilities of crystalline compounds from their chemical structures alone. J Chem Inf Comput Sci. 41 ( 5 ): 1355 – 9.en_US
dc.identifier.citedreferenceGalia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. 1998. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res 15 ( 5 ): 698 – 705.en_US
dc.identifier.citedreferenceJantratid E, Janssen N, Reppas C, Dressman JB. 2008. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm Res 25 ( 7 ): 1663 – 1676.en_US
dc.identifier.citedreferenceSheng JJ, McNamara DP, Amidon GL. 2009. Toward an in vivo dissolution methodology: A comparison of phosphate and bicarbonate buffers. Mol Pharm 6 ( 1 ): 29 – 39.en_US
dc.identifier.citedreferenceMudie DM, Shi Y, Ping H, Gao P, Amidon GL, Amidon GE. 2012. Mechanistic analysis of solute transport in an in vitro physiological two‐phase dissolution apparatus. Biopharm Drug Dispos 33 ( 7 ): 378 – 402.en_US
dc.identifier.citedreferenceKostewicz ES, Wunderlich M, Brauns U, Becker R, Bock T, Dressman JB. 2004. Predicting the precipitation of poorly soluble weak bases upon entry in the small intestine. J Pharm Pharmacol 56 ( 1 ): 43 – 51.en_US
dc.identifier.citedreferenceCarino SR, Sperry DC, Hawley M. 2006. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach–duodenum model. J Pharm Sci 95 ( 1 ): 116 – 125.en_US
dc.identifier.citedreferenceCarino SR, Sperry DC, Hawley M. 2010. Relative bioavailability of three different solid forms of PNU ‐141659 as determined with the artificial stomach‐duodenum model. J Pharm Sci 99 ( 9 ): 3923 – 3930.en_US
dc.identifier.citedreferenceMudie DM, Amidon GL, Amidon GE. 2010. Physiological parameters for oral delivery and in vitro testing. Mol Pharm 7 ( 5 ): 1388 – 1405.en_US
dc.identifier.citedreferencePressman JH, Hofmann AF, Witztum KF, Gertler SL, Steinbach JH, Stokes K, Kelts DG, Stone DM, Jones BR, Dharmsathaphorn K. 1987. Limitations of indirect methods of estimating small bowel transit in man. Dig Dis Sci 32 ( 7 ): 689 – 699.en_US
dc.identifier.citedreferenceHsieh YL, Ilevbare GA, Van Eerdenbrugh B, Box KJ, Sanchez‐Felix MV, Taylor LS. 2012. p H ‐Induced precipitation behavior of weakly basic compounds: Determination of extent and duration of supersaturation using potentiometric titration and correlation to solid state properties. Pharm Res 29 ( 10 ): 2738 – 2753.en_US
dc.identifier.citedreferencePsachoulias D, Vertzoni M, Goumas K, Kalioras V, Beato S, Butler J, Reppas C. 2011. Precipitation in and supersaturation of contents of the upper small intestine after administration of two weak bases to fasted adults. Pharm Res 28 ( 12 ): 3145 – 3158.en_US
dc.identifier.citedreferenceBrouwers J, Brewster ME, Augustijns P. 2009. Supersaturating drug delivery systems: The answer to solubility‐limited oral bioavailability ? J Pharm Sci 98 ( 8 ): 2549 – 2572.en_US
dc.identifier.citedreferenceKim MS, Kim JS, Cho W, Cha KH, Park HJ, Park J, Hwang SJ. 2013. Supersaturatable formulations for the enhanced oral absorption of sirolimus. Int J Pharm 445 ( 1–2 ): 108 – 116.en_US
dc.identifier.citedreferenceKim JS, Mitchell S, Kijek P, Tsume Y, Hilfinger J, Amidon GL. 2006. The suitability of an in situ perfusion model for permeability determinations: Utility for BCS class I biowaiver requests. Mol Pharm 3 ( 6 ): 686 – 694.en_US
dc.identifier.citedreferenceKasim NA, Whitehouse M, Ramachandran C, Bermejo M, Lennernas H, Hussain AS, Junginger HE, Stavchansky SA, Midha KK, Shah VP, Amidon GL. 2004. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol Pharm 1 ( 1 ): 85 – 96.en_US
dc.identifier.citedreferenceTakagi T, Ramachandran C, Bermejo M, Yamashita S, Yu LX, Amidon GL. 2006. A provisional biopharmaceutical classification of the top 200 oral drug products in the U nited S tates, G reat B ritain, S pain, and J apan. Mol Pharm 3 ( 6 ): 631 – 643.en_US
dc.identifier.citedreferencePade V, Stavchansky S. 1997. Estimation of the relative contribution of the transcellular and paracellular pathway to the transport of passively absorbed drugs in the C aco‐2 cell culture model. Pharm Res 14 ( 9 ): 1210 – 1215.en_US
dc.identifier.citedreferenceRoutledge PA, Shand DG. 1979. Clinical pharmacokinetics of propranolol. Clin Pharmacokinet 4 ( 2 ): 73 – 90.en_US
dc.identifier.citedreferenceTaguchi M, Nozawa T, Mizumaki K, Inoue H, Tahara K, Takesono C, Hashimoto Y. 2004. Nonlinear mixed effects model analysis of the pharmacokinetics of metoprolol in routinely treated J apanese patients. Biol Pharm Bull 27 ( 10 ): 1642 – 1648.en_US
dc.identifier.citedreferenceShand DG, Rangno RE. 1972. The disposition of propranolol. I. Elimination during oral absorption in man. Pharmacology 7 ( 3 ): 159 – 168.en_US
dc.identifier.citedreferenceEddington ND, Ashraf M, Augsburger LL, Leslie JL, Fossler MJ, Lesko LJ, Shah VP, Rekhi GS. 1998. Identification of formulation and manufacturing variables that influence in vitro dissolution and in vivo bioavailability of propranolol hydrochloride tablets. Pharm Dev Technol 3 ( 4 ): 535 – 547.en_US
dc.identifier.citedreferenceRekhi GS, Eddington ND, Fossler MJ, Schwartz P, Lesko LJ, Augsburger LL. 1997. Evaluation of in vitro release rate and in vivo absorption characteristics of four metoprolol tartrate immediate‐release tablet formulations. Pharm Dev Technol 2 ( 1 ): 11 – 24.en_US
dc.identifier.citedreferenceYamashita S, Kataoka M, Higashino H, Sakuma S, Sakamoto T, Uchimaru H, Tsukikawa H, Shiramoto M, Uchiyama H, Tachiki H, Irie S. 2013. Measurement of drug concentration in the stomach after intragastric administration of drug solution to healthy volunteers: Analysis of intragastric fluid dynamics and drug absorption. Pharm Res 30 ( 4 ): 951 – 958.en_US
dc.identifier.citedreferenceChaudhuri TK, Greenwald AJ, Heading RC. 1975. Measurement of gastric emptying time—A comparative study between nonisotopic aspiration method and new radioisotopic technique. Am J Dig Dis 20 ( 11 ): 1063 – 1066.en_US
dc.identifier.citedreferenceSteingoetter A, Fox M, Treier R, Weishaupt D, Marincek B, Boesiger P, Fried M, Schwizer W. 2006. Effects of posture on the physiology of gastric emptying: A magnetic resonance imaging study. Scand J Gastroenterol 41 ( 10 ): 1155 – 1164.en_US
dc.identifier.citedreferenceAmidon GL, Lennernas H, Shah VP, Crison JR. 1995. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 12 ( 3 ): 413 – 420.en_US
dc.identifier.citedreferenceMooney KG, Mintun MA, Himmelstein KJ, Stella VJ. 1981. Dissolution kinetics of carboxylic acids II: Effect of buffers. J Pharm Sci 70 ( 1 ): 22 – 32.en_US
dc.identifier.citedreferenceFallingborg J. 1999. Intraluminal p H of the human gastrointestinal tract. Dan Med Bull 46 ( 3 ): 183 – 196.en_US
dc.identifier.citedreferenceVertzoni M, Fotaki N, Kostewicz E, Stippler E, Leuner C, Nicolaides E, Dressman J, Reppas C. 2004. Dissolution media simulating the intralumenal composition of the small intestine: Physiological issues and practical aspects. J Pharm Pharmacol 56 ( 4 ): 453 – 462.en_US
dc.identifier.citedreferenceTsume Y, Langguth P, Garcia‐Arieta A, Amidon GL. 2012. In silico prediction of drug dissolution and absorption with variation in intestinal p H for BCS class II weak acid drugs: Ibuprofen and ketoprofen. Biopharm Drug Dispos 33 ( 7 ): 366 – 377.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.