Show simple item record

NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells

dc.contributor.authorStafford, Benjamin K.en_US
dc.contributor.authorManookin, Michael B.en_US
dc.contributor.authorSinger, Joshua H.en_US
dc.contributor.authorDemb, Jonathan B.en_US
dc.date.accessioned2014-12-09T16:53:34Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-12-09T16:53:34Z
dc.date.issued2014-11-15en_US
dc.identifier.citationStafford, Benjamin K.; Manookin, Michael B.; Singer, Joshua H.; Demb, Jonathan B. (2014). "NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells." The Journal of Physiology 592(22): 4877-4889.en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109576
dc.description.abstractPostsynaptic AMPA‐ and NMDA‐type glutamate receptors (AMPARs, NMDARs) are commonly expressed at the same synapses. AMPARs are thought to mediate the majority of fast excitatory neurotransmission whereas NMDARs, with their relatively slower kinetics and higher Ca 2+ permeability, are thought to mediate synaptic plasticity, especially in neural circuits devoted to learning and memory. In sensory neurons, however, the roles of AMPARs and NMDARs are less well understood. Here, we tested in the in vitro guinea pig retina whether AMPARs and NMDARs differentially support temporal contrast encoding by two ganglion cell types. In both OFF Alpha and Delta ganglion cells, contrast stimulation evoked an NMDAR‐mediated response with a characteristic J‐shaped I–V relationship. In OFF Delta cells, AMPAR‐ and NMDAR‐mediated responses could be modulated at low frequencies but were suppressed during 10 Hz stimulation, when responses were instead shaped by synaptic inhibition. With inhibition blocked, both AMPAR‐ and NMDAR‐mediated responses could be modulated at 10 Hz, indicating that NMDAR kinetics do not limit temporal encoding. In OFF Alpha cells, NMDAR‐mediated responses followed stimuli at frequencies up to ∼18 Hz. In both cell types, NMDAR‐mediated responses to contrast modulation at 9–18 Hz showed delays of <10 ms relative to AMPAR‐mediated responses. Thus, NMDARs combine with AMPARs to encode rapidly modulated glutamate release, and NMDAR kinetics do not limit temporal coding by OFF Alpha and Delta ganglion cells substantially. Furthermore, glutamatergic transmission is differentially regulated across bipolar cell pathways: in some, release is suppressed at high temporal frequencies by presynaptic inhibition.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleNMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109576/1/tjp6355.pdf
dc.identifier.doi10.1113/jphysiol.2014.276543en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceStevens JK, McGuire BA & Sterling P ( 1980 ). Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion cells. Science 207, 317 – 319.en_US
dc.identifier.citedreferenceSchwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, Wong RO & Rieke F ( 2012 ). The spatial structure of a nonlinear receptive field. Nat Neurosci 15, 1572 – 1580.en_US
dc.identifier.citedreferenceSethuramanujam S & Slaughter MM ( 2014 ). Disinhibitory rectruitment of NMDA receptor pathways in retina. J Neurophysiol 112, 193 – 203.en_US
dc.identifier.citedreferenceSlaughter MM & Miller RF ( 1981 ). 2‐amino‐4‐phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182 – 185.en_US
dc.identifier.citedreferenceSteinert JR, Postlethwaite M, Jordan MD, Chernova T, Robinson SW & Forsythe ID ( 2010 ). NMDAR‐mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. J Physiol 588, 447 – 463.en_US
dc.identifier.citedreferenceBarria A & Malinow R ( 2005 ). NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48, 289 – 301.en_US
dc.identifier.citedreferenceTovar KR, McGinley MJ & Westbrook GL ( 2013 ). Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33, 9150 – 9160.en_US
dc.identifier.citedreferenceTraynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ & Dingledine R ( 2010 ). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62, 405 – 496.en_US
dc.identifier.citedreferencevan Wyk M, Wässle H & Taylor WR ( 2009 ) Receptive field properties of ON‐ and OFF‐ganglion cells in the mouse retina. Vis Neurosci 26, 297 – 308.en_US
dc.identifier.citedreferenceVaney DI, Sivyer B & Taylor WR ( 2012 ). Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat Rev Neurosci 13, 194 – 208.en_US
dc.identifier.citedreferenceVenkataramani S & Taylor WR ( 2010 ). Orientation selectivity in rabbit retinal ganglion cells is mediated by presynaptic inhibition. J Neurosci 30, 15664 – 15676.en_US
dc.identifier.citedreferenceVenkataramani S, van Wyk M, Buldyrev I, Sivyer B, Vaney DI & Taylor WR ( 2014 ). Distinct roles for inhibition in spatial and temporal tuning of local edge detectors in rabbit retina. PLoS ONE 9, e88560.en_US
dc.identifier.citedreferenceWilliams SR & Mitchell SJ ( 2008 ). Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11, 790 – 798.en_US
dc.identifier.citedreferenceWolszon LR, Pereda AE & Faber DS ( 1997 ). A fast synaptic potential mediated by NMDA and non‐NMDA receptors. J Neurophysiol 78, 2693 – 2706.en_US
dc.identifier.citedreferenceYan D & Tomita S ( 2012 ). Defined criteria for auxiliary subunits of glutamate receptors. J Physiol 590, 21 – 31.en_US
dc.identifier.citedreferenceYonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Jüttner J, Noda M, Neve RL, Conzelmann KK & Roska B ( 2013 ). The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79, 1078 – 1085.en_US
dc.identifier.citedreferenceZaghloul KA, Boahen K & Demb JB ( 2005 ). Contrast adaptation in subthreshold and spiking responses of mammalian Y‐type retinal ganglion cells. J Neurosci 25, 860 – 868.en_US
dc.identifier.citedreferenceZhang J & Diamond JS ( 2009 ). Subunit‐ and pathway‐specific localization of NMDA receptors and scaffolding proteins at ganglion cell synapses in rat retina. J Neurosci 29, 4274 – 428.en_US
dc.identifier.citedreferenceBorghuis BG, Marvin JS, Looger LL & Demb, JB ( 2013 ). Two‐photon imaging of nonlinear glutamate release dynamics at bipolar cell synapses in the mouse retina. J Neurosci 33, 10972 – 10985.en_US
dc.identifier.citedreferenceBorghuis BG, Looger LL, Tomita S & Demb JB ( 2014 ). Kainate receptors mediate signaling in both transient and sustained OFF bipolar cell pathways in mouse retina. J Neurosci 34, 6128 – 6139.en_US
dc.identifier.citedreferenceBuldyrev I, Puthussery T & Taylor WR ( 2012 ). Synaptic pathways that shape the excitatory drive in an OFF retinal ganglion cell. J Neurophysiol 107, 1795 – 1807.en_US
dc.identifier.citedreferenceChen S & Diamond JS ( 2002 ). Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J Neurosci 22, 2165 – 2173.en_US
dc.identifier.citedreferenceCrook JD, Packer OS & Dacey DM ( 2014 ). A synaptic signature for ON‐and OFF‐center parasol ganglion cells of the primate retina. Vis Neurosci 31, 57 – 84.en_US
dc.identifier.citedreferenceDemb JB & Singer JS ( 2012 ). Intrinsic properties and functional circuitry of the AII amacrine cell. Vis Neurosci 29, 51 – 60.en_US
dc.identifier.citedreferenceDemb JB, Zaghloul K, Haarsma L & Sterling P ( 2001 ). Bipolar cells contribute to nonlinear spatial summation in the brisk‐transient (Y) ganglion cell in mammalian retina. J Neurosci 21, 7447 – 7454.en_US
dc.identifier.citedreferenceDiamond JS & Copenhagen DR ( 1993 ). The contribution of NMDA and non‐NMDA receptors to the light‐evoked input–output characteristics of retinal ganglion cells. Neuron 11, 725 – 738.en_US
dc.identifier.citedreferenceErreger K, Dravid SM, Banke TG, Wyllie DJA & Traynelis SF ( 2005 ). Subunit‐specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol 563, 345 – 358.en_US
dc.identifier.citedreferenceEuler T, Detwiler PB & Denk W ( 2002 ). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845 – 852.en_US
dc.identifier.citedreferenceFlores‐Herr N, Protti DA & Wässle H ( 2001 ). Synaptic currents generating the inhibitory surround of ganglion cells in the mammalian retina. J Neurosci 21, 4852 – 4863.en_US
dc.identifier.citedreferenceFreed M & Sterling P ( 1988 ). The ON‐alpha ganglion cell of the cat retina and its presynaptic cell types. J Neurosci 8, 2303 – 2303.en_US
dc.identifier.citedreferenceFried SI, Münch TA & Werblin FS ( 2002 ). Mechanisms and circuitry underlying directional selectivity in the retina. Nature 420, 411 – 414.en_US
dc.identifier.citedreferenceGrimes WN, Seal RP, Oesch N, Edwards RH & Diamond JS ( 2011 ). Genetic targeting and physiological features of VGLUT3+ amacrine cells. Vis Neurosci 28, 381 – 392.en_US
dc.identifier.citedreferenceGustafson EC, Stevens ER, Wolosker H & Miller RF ( 2007 ). Endogenous d ‐serine contributes to NMDA‐receptor‐mediated light‐evoked responses in the vertebrate retina. J Neurophysiol 98, 122 – 130.en_US
dc.identifier.citedreferenceHansen KB, Ogden KK, Yuan H & Traynelis SF ( 2014 ). Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81, 1084 – 1096.en_US
dc.identifier.citedreferenceJones RS, Carroll RC & Nawy S ( 2012 ). Light‐induced plasticity of synaptic AMPA receptor composition in retinal ganglion cells. Neuron 75, 467 – 478.en_US
dc.identifier.citedreferenceKalbaugh TL, Zhang J & Diamond JS ( 2009 ). Coagonist release modulates NMDA receptor subtype contributions at synaptic inputs to retinal ganglion cells. J Neurosci 29, 1469 – 1479.en_US
dc.identifier.citedreferenceKolb H & Nelson R ( 1993 ). OFF‐alpha and OFF‐beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol 329, 85 – 110.en_US
dc.identifier.citedreferenceLankheet MJ, Molenaar J & van de Grind WA ( 1989 ). Frequency transfer properties of the spike generating mechanism of cat retinal ganglion cells. Vision Res 29, 1649 – 1661.en_US
dc.identifier.citedreferenceManookin MB, Beaudoin DL, Ernst ZR, Flagel LJ & Demb JB ( 2008 ). Disinhibition combines with excitation to extend the operating range of the OFF visual pathway in daylight. J Neurosci 28, 4136 – 4150.en_US
dc.identifier.citedreferenceManookin MB, Weick M, Stafford BK & Demb JB ( 2010 ). NMDA receptor contributions to visual contrast coding. Neuron 67, 280 – 293.en_US
dc.identifier.citedreferenceMasland RH ( 2012 ). The neuronal organization of the retina. Neuron 76, 266 – 280.en_US
dc.identifier.citedreferenceMazade RE & Eggers ED ( 2013 ). Light adaptation alters the source of inhibition to the mouse retinal OFF pathway. J Neurophysiol 110, 2113 – 2128.en_US
dc.identifier.citedreferenceMittman S, Taylor WR & Copenhagen DR ( 1990 ). Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. J Physiol 428, 175 – 197.en_US
dc.identifier.citedreferenceNg D, Pitcher GM, Szilard RK, Sertié A, Kanisek M, Clapcote SJ, Lipina T, Kalia LV, Joo D, McKerlie C, Cortez M, Roder JC, Salter MW & McInnes RR ( 2009 ). Neto1 is a novel CUB‐domain NMDA receptor‐interacting protein required for synaptic plasticity and learning. PLoS Biol 7, e41.en_US
dc.identifier.citedreferencePark SJ, Kim IJ, Looger LL, Demb JB & Borghuis BG ( 2014 ). Excitatory synaptic inputs to mouse on‐off direction‐selective retinal ganglion cells lack direction tuning. J Neurosci 34, 3976 – 3981.en_US
dc.identifier.citedreferencePoleg‐Polsky A & Diamond JS ( 2011 ). Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings. PLoS ONE 6, e19463.en_US
dc.identifier.citedreferenceRumbaugh G, Prybylowski K, Wang JF & Vicini S ( 2000 ). Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83, 1300 – 1306.en_US
dc.identifier.citedreferenceRussell TL & Werblin FS ( 2010 ). Retinal synaptic pathways underlying the response of the rabbit local edge detector. J Neurophysiol 103, 2757 – 2769.en_US
dc.identifier.citedreferenceSagdullaev BT, McCall MA & Lukasiewicz PD ( 2006 ). Presynaptic inhibition modulates spillover, creating distinct dynamic response ranges of sensory output. Neuron 50, 923 – 935.en_US
dc.identifier.citedreferenceSagdullaev BT, Eggers ED, Purgert R & Lukasiewicz PD ( 2011 ). Nonlinear interactions between excitatory and inhibitory retinal synapses control visual output. J Neurosci 31, 15102 – 15112.en_US
dc.identifier.citedreferenceSanchez JT, Wang Y, Rubel EW & Barria A ( 2010 ). Development of glutamatergic synaptic transmission in binaural auditory neurons. J Neurophysiol 104, 1774 – 1789.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.