Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants
dc.contributor.author | Pringle, Elizabeth G. | en_US |
dc.contributor.author | Novo, Alexandria | en_US |
dc.contributor.author | Ableson, Ian | en_US |
dc.contributor.author | Barbehenn, Raymond V. | en_US |
dc.contributor.author | Vannette, Rachel L. | en_US |
dc.date.accessioned | 2014-12-09T16:53:39Z | |
dc.date.available | WITHHELD_12_MONTHS | en_US |
dc.date.available | 2014-12-09T16:53:39Z | |
dc.date.issued | 2014-11 | en_US |
dc.identifier.citation | Pringle, Elizabeth G.; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V.; Vannette, Rachel L. (2014). "Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants." Ecology and Evolution 4(21): 4065-4079. | en_US |
dc.identifier.issn | 2045-7758 | en_US |
dc.identifier.issn | 2045-7758 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/109587 | |
dc.description.abstract | In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata , and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica . Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica . Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. The role of indirect effects in trait evolution remains poorly understood. We show that plant chemical traits indirectly affect ant colony fitness and behavior via direct interactions with aphids. These plant‐derived effects on ant behavior could feed back to affect plant fitness in the field. | en_US |
dc.publisher | University of Florica | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Milkweed | en_US |
dc.subject.other | Phloem Chemistry | en_US |
dc.subject.other | Tritrophic Interactions | en_US |
dc.subject.other | Cardenolides | en_US |
dc.subject.other | Aphis Nerii | en_US |
dc.subject.other | Carbohydrate | en_US |
dc.subject.other | Asclepias Spp. | en_US |
dc.subject.other | Linepithema Humile | en_US |
dc.title | Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109587/1/ece31277.pdf | |
dc.identifier.doi | 10.1002/ece3.1277 | en_US |
dc.identifier.source | Ecology and Evolution | en_US |
dc.identifier.citedreference | Rothschild, M., J. von Euw, and T. Reichstein. 1970. Cardiac glycosides in the oleander aphid, Aphis nerii. J. Insect Physiol. 16: 1141 – 1145. | en_US |
dc.identifier.citedreference | Moreira, X., K. A. Mooney, R. Zas, and L. Sampedro. 2012. Bottom‐up effects of host‐plant species diversity and top‐down effects of ants interactively increase plant performance. Proc. Biol. Sci. 279: 4464 – 4472. | en_US |
dc.identifier.citedreference | Nonacs, P. 1991. Less growth with more food: how insect‐prey availability changes colony demographics in the ant, Camponotus floridanus. J. Insect Physiol. 37: 891 – 898. | en_US |
dc.identifier.citedreference | Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. Minchin, R. B. O'Hara, et al. 2013. vegan: Community Ecology Package version 2.0‐10. Available at http://CRAN.R-project.org/package.vegan. (accessed April 22, 2014). | en_US |
dc.identifier.citedreference | Porter, S. D., and W. R. Tschinkel. 1985. Fire ant polymorphism ‐ the ergonomics of brood production. Behav. Ecol. Sociobiol. 16: 323 – 336. | en_US |
dc.identifier.citedreference | Pringle, E. G. 2014. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant‐plant mutualism. Proc. Biol. Sci. 281: 20140474. | en_US |
dc.identifier.citedreference | Pringle, E. G., R. Dirzo, and D. M. Gordon. 2011. Indirect benefits of symbiotic coccoids for an ant‐defended myrmecophytic tree. Ecology 91: 37 – 46. | en_US |
dc.identifier.citedreference | R Core Team. 2014. R: a language and environment for statistical computing, version 3.0.3. R Foundation for Statistical Computing, Vienna, Austria. | en_US |
dc.identifier.citedreference | de Roode, J. C., R. M. Rarick, A. J. Mongue, N. M. Gerardo, and M. D. Hunter. 2011. Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecol. Lett. 14: 453 – 461. | en_US |
dc.identifier.citedreference | Cassill, D. L., and W. R. Tschinkel. 1999. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect. Behav. 12: 307 – 328. | en_US |
dc.identifier.citedreference | SAS Institute. 2012. JMP, version 10.0.0. SAS Institute, Cary, NC. | en_US |
dc.identifier.citedreference | Shik, J. Z., and J. Silverman. 2013. Towards a nutritional ecology of invasive establishment: aphid mutualists provide better fuel for incipient Argentine ant colonies than insect prey. Biol. Invasions 15: 829 – 836. | en_US |
dc.identifier.citedreference | Sorvari, J., P. Theodora, S. Turillazzi, H. Hakkarainen, and L. Sundstrom. 2008. Food resources, chemical signaling, and nest mate recognition in the ant Formica aquilonia. Behav. Ecol. 19: 441 – 447. | en_US |
dc.identifier.citedreference | Sternberg, E. D., T. Lefevre, J. Li, C. L. F. de Castillejo, H. Li, M. D. Hunter, et al. 2012. Food plant‐derived disease tolerance and resistance in a natural butterfly‐plant‐parasite interactions. Evolution 66: 3367 – 3376. | en_US |
dc.identifier.citedreference | Strauss, S. Y., H. Sahli, and J. K. Conner. 2005. Toward a more trait‐centered approach to diffuse (co)evolution. New Phytol. 165: 81 – 89. | en_US |
dc.identifier.citedreference | Styrsky, J. D., and M. D. Eubanks. 2007. Ecological consequences of interactions between ants and honeydew‐producing insects. Proc. Biol. Sci. 274: 151 – 164. | en_US |
dc.identifier.citedreference | Tao, L. L., A. R. Berns, and M. D. Hunter. 2014. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 28: 190 – 196. | en_US |
dc.identifier.citedreference | Tillberg, C. V., D. A. Holway, E. G. LeBrun, and A. V. Suarez. 2007. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl Acad. Sci. USA 104: 20856 – 20861. | en_US |
dc.identifier.citedreference | Tsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97: 5948 – 5953. | en_US |
dc.identifier.citedreference | Utsumi, S. 2013. Evolutionary community ecology of plant‐associated arthropods in terrestrial ecosystems. Ecol. Res. 28: 359 – 371. | en_US |
dc.identifier.citedreference | Vannette, R. L., and M. D. Hunter. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Glob. Change Biol. 17: 1277 – 1288. | en_US |
dc.identifier.citedreference | Völkl, W., J. Woodring, M. Fischer, M. W. Lorenz, and K. H. Hoffmann. 1999. Ant‐aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118: 483 – 491. | en_US |
dc.identifier.citedreference | Vrieling, K., W. Smit, and E. Vandermeijden. 1991. Tritrophic interactions between aphids ( Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 86: 177 – 182. | en_US |
dc.identifier.citedreference | Wang, Y., U. Naumann, S. T. Wright, and D. I. Warton. 2012. mvabund ‐ an R package for model‐based analysis of multivariate abundance data. Methods Ecol. Evol. 3: 471 – 474. | en_US |
dc.identifier.citedreference | Warton, D. I., S. T. Wright, and Y. Wang. 2012. Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3: 89 – 101. | en_US |
dc.identifier.citedreference | Wilder, S. M., D. A. Holway, A. V. Suarez, and M. D. Eubanks. 2011. Macronutrient content of plant‐based food affects growth of a carnivorous arthropod. Ecology 92: 325 – 332. | en_US |
dc.identifier.citedreference | Wimp, G. M., and T. G. Whitham. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid‐ant mutualism. Ecology 82: 440 – 452. | en_US |
dc.identifier.citedreference | Woodring, J., R. Wiedemann, M. K. Fischer, K. H. Hoffmann, and W. Völkl. 2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant‐attendance hierarchy in eight species of aphids feeding on tansy ( Tanacetum vulgare ). Physiol. Entomol. 29: 311 – 319. | en_US |
dc.identifier.citedreference | Abdala‐Roberts, L., A. A. Agrawal, and K. A. Mooney. 2012. Ant‐aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos 121: 1905 – 1913. | en_US |
dc.identifier.citedreference | Agrawal, A. A., G. Petschenka, R. A. Bingham, M. G. Weber, and S. Rasmann. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant‐herbivore interactions. New Phytol. 194: 28 – 45. | en_US |
dc.identifier.citedreference | Blüthgen, N., and K. Fiedler. 2004. Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community. J. Anim. Ecol. 73: 155 – 166. | en_US |
dc.identifier.citedreference | Botha, C. E. J., S. B. Malcolm, and R. F. Evert. 1977. Investigation of preferential feeding habit in four Asclepiadaceae by the aphid, Aphis nerii B. de F.. Protoplasma 92: 1 – 19. | en_US |
dc.identifier.citedreference | Bristow, C. M. 1991. Are ant‐aphid associations a tritrophic interaction? Oleander aphids and Argentine ants. Oecologia 87: 514 – 521. | en_US |
dc.identifier.citedreference | Cohen, J. A. 1983. Chemical interactions among milkweed plants (Asclepiadaceae) and lepidopteran herbivores. University of Florica, Gainesville, FL. | en_US |
dc.identifier.citedreference | Cohen, S. A., and D. P. Michaud. 1993. Synthesis of a fluorescent derivatizing reagent, 6‐aminoquinolyl‐ N ‐hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high‐performance liquid chromatography. Anal. Biochem. 211: 279 – 287. | en_US |
dc.identifier.citedreference | Cook‐Patton, S. C., S. H. McArt, A. L. Parachnowitsch, J. S. Thaler, and A. A. Agrawal. 2011. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92: 915 – 923. | en_US |
dc.identifier.citedreference | Cornelius, M. L., J. K. Grace, and J. R. Yates. 1996. Acceptability of different sugars and oils to three tropical ant species (Hymen, Formicidae). Anzeiger Fur Schadlingskunde Pflanzenschutz Umweltschutz 69: 41 – 43. | en_US |
dc.identifier.citedreference | Cushman, J. H. 1991. Host‐plant mediation of insect mutualisms ‐ variable outcomes in herbivore‐ant interactions. Oikos 61: 138 – 142. | en_US |
dc.identifier.citedreference | Denno, R. F., and W. F. Fagan. 2003. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84: 2522 – 2531. | en_US |
dc.identifier.citedreference | Douglas, A. E. 1993. The nutritional quality of phloem sap utilized by natural aphid populations. Ecol. Entomol. 18: 31 – 38. | en_US |
dc.identifier.citedreference | Douglas, A. E. 2006. Phloem‐sap feeding by animals: problems and solutions. J. Exp. Bot. 57: 747 – 754. | en_US |
dc.identifier.citedreference | Dussutour, A., and S. J. Simpson. 2008a. Carbohydrate regulation in relation to colony growth in ants. J. Exp. Biol. 211: 2224 – 2232. | en_US |
dc.identifier.citedreference | Dussutour, A., and S. J. Simpson. 2008b. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55: 329 – 333. | en_US |
dc.identifier.citedreference | Dussutour, A., and S. J. Simpson. 2012. Ant workers die young and colonies collapse when fed a high‐protein diet. Proc. Biol. Sci. 279: 2402 – 2408. | en_US |
dc.identifier.citedreference | Fine, P. V. A., I. Mesones, and P. D. Coley. 2004. Herbivores promote habitat specialization by trees in amazonian forests. Science 305: 663 – 665. | en_US |
dc.identifier.citedreference | Fischer, M. K., W. Völkl, and K. H. Hoffmann. 2005. Honeydew production and honeydew sugar composition of polyphagous black bean aphid, Aphis fabae (Hemiptera: Aphididae) on various host plants and implications for ant‐attendance. Eur. J. Entomol. 102: 155 – 160. | en_US |
dc.identifier.citedreference | Fishbein, M., D. Chuba, C. Ellison, R. J. Mason‐Gamer, and S. P. Lynch. 2011. Phylogenetic relationships of Asclepias (Apocynaceae) inferred from non‐coding chloroplast DNA sequences. Syst. Bot. 36: 1008 – 1023. | en_US |
dc.identifier.citedreference | Fisher, D. B., J. P. Wright, and T. E. Mittler. 1984. Osmoregulation by the aphid Myzus persicae: a physiological role for honeydew oligosaccharides. J. Insect Physiol. 30: 387 – 393. | en_US |
dc.identifier.citedreference | Fukuyama, Y., M. Ochi, H. Kasai, and M. Kodama. 1993. Insect growth inhibitory cardenolide glycosides from Anonendron affine. Phytochemistry 32: 297 – 301. | en_US |
dc.identifier.citedreference | Gordon, D. M. 1987. Group‐level dynamics in harvester ants ‐ young colonies and the role of patrolling. Anim. Behav. 35: 833 – 843. | en_US |
dc.identifier.citedreference | Grover, C. D., A. D. Kay, J. A. Monson, T. C. Marsh, and D. A. Holway. 2007. Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proc. Biol. Sci. 274: 2951 – 2957. | en_US |
dc.identifier.citedreference | Heinze, J., S. Foitzik, A. Hippert, and B. Holldobler. 1996. Apparent dear‐enemy phenomenon and environment‐based recognition cues in the ant Leptothorax nylanderi. Ethology 102: 510 – 522. | en_US |
dc.identifier.citedreference | Helms, S. E., S. J. Connelly, and M. D. Hunter. 2004. Effects of variation among plant species on the interaction between a herbivore and its parasitoid. Ecol. Entomol. 29: 44 – 51. | en_US |
dc.identifier.citedreference | Hendrix, D. L., Y. A. Wei, and J. E. Leggett. 1992. Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp. Biochem. Physiol. Biochem. Mol. Biol. 101: 23 – 27. | en_US |
dc.identifier.citedreference | Hölldobler, B., and E. O. Wilson. 1990. The ants. Bellknap Press, Cambridge, MA. | en_US |
dc.identifier.citedreference | Howard, D. F., and W. R. Tschinkel. 1980. The effect of colony size and starvation on food flow in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 7: 293 – 300. | en_US |
dc.identifier.citedreference | Johnson, M. T. J. 2008. Bottom‐up effects of plant genotype on aphids, ants, and predators. Ecology 89: 145 – 154. | en_US |
dc.identifier.citedreference | Johnson, M. T. J., M. Vellend, and J. R. Stinchcombe. 2009. Evolution in plant populations as a driver of ecological changes in arthropod communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364: 1593 – 1605. | en_US |
dc.identifier.citedreference | Katayama, N., T. Tsuchida, M. K. Hojo, and T. Ohgushi. 2013. Aphid genotype determines intensity of ant attendance: do endosymbionts and honeydew composition matter? Ann. Entomol. Soc. Am. 106: 761 – 770. | en_US |
dc.identifier.citedreference | Liang, D., and J. Silverman. 2000. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87: 412 – 416. | en_US |
dc.identifier.citedreference | Malcolm, S. B. 1990. Chemical defence in chewing and sucking insect herbivores: plant‐derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1: 12 – 21. | en_US |
dc.identifier.citedreference | Martel, J. W., and S. B. Malcolm. 2004. Density‐dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. J. Chem. Ecol. 30: 545 – 561. | en_US |
dc.identifier.citedreference | Mittler, T. E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae) II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol. 35: 74 – 84. | en_US |
dc.identifier.citedreference | Molyneux, R. J., B. C. Campbell, and D. L. Dreyer. 1990. Honeydew analysis for detecting phloem transport of plant natural products ‐ implications for host‐plant resistance to sap‐sucking insects. J. Chem. Ecol. 16: 1899 – 1909. | en_US |
dc.identifier.citedreference | Mooney, K. A., and A. A. Agrawal. 2008. Plant genotype shapes ant‐aphid interactions: implications for community structure and indirect plant defense. Am. Nat. 171: E195 – E205. | en_US |
dc.identifier.citedreference | Mooney, K. A., P. Jones, and A. A. Agrawal. 2008. Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed‐feeding aphids. Oikos 117: 450 – 458. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.