Show simple item record

Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants

dc.contributor.authorPringle, Elizabeth G.en_US
dc.contributor.authorNovo, Alexandriaen_US
dc.contributor.authorAbleson, Ianen_US
dc.contributor.authorBarbehenn, Raymond V.en_US
dc.contributor.authorVannette, Rachel L.en_US
dc.date.accessioned2014-12-09T16:53:39Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-12-09T16:53:39Z
dc.date.issued2014-11en_US
dc.identifier.citationPringle, Elizabeth G.; Novo, Alexandria; Ableson, Ian; Barbehenn, Raymond V.; Vannette, Rachel L. (2014). "Plant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending ants." Ecology and Evolution 4(21): 4065-4079.en_US
dc.identifier.issn2045-7758en_US
dc.identifier.issn2045-7758en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109587
dc.description.abstractIn plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem‐feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plant's genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata , and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica . Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica . Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant‐species‐specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field. The role of indirect effects in trait evolution remains poorly understood. We show that plant chemical traits indirectly affect ant colony fitness and behavior via direct interactions with aphids. These plant‐derived effects on ant behavior could feed back to affect plant fitness in the field.en_US
dc.publisherUniversity of Floricaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMilkweeden_US
dc.subject.otherPhloem Chemistryen_US
dc.subject.otherTritrophic Interactionsen_US
dc.subject.otherCardenolidesen_US
dc.subject.otherAphis Neriien_US
dc.subject.otherCarbohydrateen_US
dc.subject.otherAsclepias Spp.en_US
dc.subject.otherLinepithema Humileen_US
dc.titlePlant‐derived differences in the composition of aphid honeydew and their effects on colonies of aphid‐tending antsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109587/1/ece31277.pdf
dc.identifier.doi10.1002/ece3.1277en_US
dc.identifier.sourceEcology and Evolutionen_US
dc.identifier.citedreferenceRothschild, M., J. von Euw, and T. Reichstein. 1970. Cardiac glycosides in the oleander aphid, Aphis nerii. J. Insect Physiol. 16: 1141 – 1145.en_US
dc.identifier.citedreferenceMoreira, X., K. A. Mooney, R. Zas, and L. Sampedro. 2012. Bottom‐up effects of host‐plant species diversity and top‐down effects of ants interactively increase plant performance. Proc. Biol. Sci. 279: 4464 – 4472.en_US
dc.identifier.citedreferenceNonacs, P. 1991. Less growth with more food: how insect‐prey availability changes colony demographics in the ant, Camponotus floridanus. J. Insect Physiol. 37: 891 – 898.en_US
dc.identifier.citedreferenceOksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, R. B. Minchin, R. B. O'Hara, et al. 2013. vegan: Community Ecology Package version 2.0‐10. Available at http://CRAN.R-project.org/package.vegan. (accessed April 22, 2014).en_US
dc.identifier.citedreferencePorter, S. D., and W. R. Tschinkel. 1985. Fire ant polymorphism ‐ the ergonomics of brood production. Behav. Ecol. Sociobiol. 16: 323 – 336.en_US
dc.identifier.citedreferencePringle, E. G. 2014. Harnessing ant defence at fruits reduces bruchid seed predation in a symbiotic ant‐plant mutualism. Proc. Biol. Sci. 281: 20140474.en_US
dc.identifier.citedreferencePringle, E. G., R. Dirzo, and D. M. Gordon. 2011. Indirect benefits of symbiotic coccoids for an ant‐defended myrmecophytic tree. Ecology 91: 37 – 46.en_US
dc.identifier.citedreferenceR Core Team. 2014. R: a language and environment for statistical computing, version 3.0.3. R Foundation for Statistical Computing, Vienna, Austria.en_US
dc.identifier.citedreferencede Roode, J. C., R. M. Rarick, A. J. Mongue, N. M. Gerardo, and M. D. Hunter. 2011. Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecol. Lett. 14: 453 – 461.en_US
dc.identifier.citedreferenceCassill, D. L., and W. R. Tschinkel. 1999. Regulation of diet in the fire ant, Solenopsis invicta. J. Insect. Behav. 12: 307 – 328.en_US
dc.identifier.citedreferenceSAS Institute. 2012. JMP, version 10.0.0. SAS Institute, Cary, NC.en_US
dc.identifier.citedreferenceShik, J. Z., and J. Silverman. 2013. Towards a nutritional ecology of invasive establishment: aphid mutualists provide better fuel for incipient Argentine ant colonies than insect prey. Biol. Invasions 15: 829 – 836.en_US
dc.identifier.citedreferenceSorvari, J., P. Theodora, S. Turillazzi, H. Hakkarainen, and L. Sundstrom. 2008. Food resources, chemical signaling, and nest mate recognition in the ant Formica aquilonia. Behav. Ecol. 19: 441 – 447.en_US
dc.identifier.citedreferenceSternberg, E. D., T. Lefevre, J. Li, C. L. F. de Castillejo, H. Li, M. D. Hunter, et al. 2012. Food plant‐derived disease tolerance and resistance in a natural butterfly‐plant‐parasite interactions. Evolution 66: 3367 – 3376.en_US
dc.identifier.citedreferenceStrauss, S. Y., H. Sahli, and J. K. Conner. 2005. Toward a more trait‐centered approach to diffuse (co)evolution. New Phytol. 165: 81 – 89.en_US
dc.identifier.citedreferenceStyrsky, J. D., and M. D. Eubanks. 2007. Ecological consequences of interactions between ants and honeydew‐producing insects. Proc. Biol. Sci. 274: 151 – 164.en_US
dc.identifier.citedreferenceTao, L. L., A. R. Berns, and M. D. Hunter. 2014. Why does a good thing become too much? Interactions between foliar nutrients and toxins determine performance of an insect herbivore. Funct. Ecol. 28: 190 – 196.en_US
dc.identifier.citedreferenceTillberg, C. V., D. A. Holway, E. G. LeBrun, and A. V. Suarez. 2007. Trophic ecology of invasive Argentine ants in their native and introduced ranges. Proc. Natl Acad. Sci. USA 104: 20856 – 20861.en_US
dc.identifier.citedreferenceTsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl Acad. Sci. USA 97: 5948 – 5953.en_US
dc.identifier.citedreferenceUtsumi, S. 2013. Evolutionary community ecology of plant‐associated arthropods in terrestrial ecosystems. Ecol. Res. 28: 359 – 371.en_US
dc.identifier.citedreferenceVannette, R. L., and M. D. Hunter. 2011. Genetic variation in expression of defense phenotype may mediate evolutionary adaptation of Asclepias syriaca to elevated CO2. Glob. Change Biol. 17: 1277 – 1288.en_US
dc.identifier.citedreferenceVölkl, W., J. Woodring, M. Fischer, M. W. Lorenz, and K. H. Hoffmann. 1999. Ant‐aphid mutualisms: the impact of honeydew production and honeydew sugar composition on ant preferences. Oecologia 118: 483 – 491.en_US
dc.identifier.citedreferenceVrieling, K., W. Smit, and E. Vandermeijden. 1991. Tritrophic interactions between aphids ( Aphis jacobaeae Schrank), ant species, Tyria jacobaeae L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration. Oecologia 86: 177 – 182.en_US
dc.identifier.citedreferenceWang, Y., U. Naumann, S. T. Wright, and D. I. Warton. 2012. mvabund ‐ an R package for model‐based analysis of multivariate abundance data. Methods Ecol. Evol. 3: 471 – 474.en_US
dc.identifier.citedreferenceWarton, D. I., S. T. Wright, and Y. Wang. 2012. Distance‐based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3: 89 – 101.en_US
dc.identifier.citedreferenceWilder, S. M., D. A. Holway, A. V. Suarez, and M. D. Eubanks. 2011. Macronutrient content of plant‐based food affects growth of a carnivorous arthropod. Ecology 92: 325 – 332.en_US
dc.identifier.citedreferenceWimp, G. M., and T. G. Whitham. 2001. Biodiversity consequences of predation and host plant hybridization on an aphid‐ant mutualism. Ecology 82: 440 – 452.en_US
dc.identifier.citedreferenceWoodring, J., R. Wiedemann, M. K. Fischer, K. H. Hoffmann, and W. Völkl. 2004. Honeydew amino acids in relation to sugars and their role in the establishment of ant‐attendance hierarchy in eight species of aphids feeding on tansy ( Tanacetum vulgare ). Physiol. Entomol. 29: 311 – 319.en_US
dc.identifier.citedreferenceAbdala‐Roberts, L., A. A. Agrawal, and K. A. Mooney. 2012. Ant‐aphid interactions on Asclepias syriaca are mediated by plant genotype and caterpillar damage. Oikos 121: 1905 – 1913.en_US
dc.identifier.citedreferenceAgrawal, A. A., G. Petschenka, R. A. Bingham, M. G. Weber, and S. Rasmann. 2012. Toxic cardenolides: chemical ecology and coevolution of specialized plant‐herbivore interactions. New Phytol. 194: 28 – 45.en_US
dc.identifier.citedreferenceBlüthgen, N., and K. Fiedler. 2004. Preferences for sugars and amino acids and their conditionality in a diverse nectar‐feeding ant community. J. Anim. Ecol. 73: 155 – 166.en_US
dc.identifier.citedreferenceBotha, C. E. J., S. B. Malcolm, and R. F. Evert. 1977. Investigation of preferential feeding habit in four Asclepiadaceae by the aphid, Aphis nerii B. de F.. Protoplasma 92: 1 – 19.en_US
dc.identifier.citedreferenceBristow, C. M. 1991. Are ant‐aphid associations a tritrophic interaction? Oleander aphids and Argentine ants. Oecologia 87: 514 – 521.en_US
dc.identifier.citedreferenceCohen, J. A. 1983. Chemical interactions among milkweed plants (Asclepiadaceae) and lepidopteran herbivores. University of Florica, Gainesville, FL.en_US
dc.identifier.citedreferenceCohen, S. A., and D. P. Michaud. 1993. Synthesis of a fluorescent derivatizing reagent, 6‐aminoquinolyl‐ N ‐hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high‐performance liquid chromatography. Anal. Biochem. 211: 279 – 287.en_US
dc.identifier.citedreferenceCook‐Patton, S. C., S. H. McArt, A. L. Parachnowitsch, J. S. Thaler, and A. A. Agrawal. 2011. A direct comparison of the consequences of plant genotypic and species diversity on communities and ecosystem function. Ecology 92: 915 – 923.en_US
dc.identifier.citedreferenceCornelius, M. L., J. K. Grace, and J. R. Yates. 1996. Acceptability of different sugars and oils to three tropical ant species (Hymen, Formicidae). Anzeiger Fur Schadlingskunde Pflanzenschutz Umweltschutz 69: 41 – 43.en_US
dc.identifier.citedreferenceCushman, J. H. 1991. Host‐plant mediation of insect mutualisms ‐ variable outcomes in herbivore‐ant interactions. Oikos 61: 138 – 142.en_US
dc.identifier.citedreferenceDenno, R. F., and W. F. Fagan. 2003. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84: 2522 – 2531.en_US
dc.identifier.citedreferenceDouglas, A. E. 1993. The nutritional quality of phloem sap utilized by natural aphid populations. Ecol. Entomol. 18: 31 – 38.en_US
dc.identifier.citedreferenceDouglas, A. E. 2006. Phloem‐sap feeding by animals: problems and solutions. J. Exp. Bot. 57: 747 – 754.en_US
dc.identifier.citedreferenceDussutour, A., and S. J. Simpson. 2008a. Carbohydrate regulation in relation to colony growth in ants. J. Exp. Biol. 211: 2224 – 2232.en_US
dc.identifier.citedreferenceDussutour, A., and S. J. Simpson. 2008b. Description of a simple synthetic diet for studying nutritional responses in ants. Insectes Soc. 55: 329 – 333.en_US
dc.identifier.citedreferenceDussutour, A., and S. J. Simpson. 2012. Ant workers die young and colonies collapse when fed a high‐protein diet. Proc. Biol. Sci. 279: 2402 – 2408.en_US
dc.identifier.citedreferenceFine, P. V. A., I. Mesones, and P. D. Coley. 2004. Herbivores promote habitat specialization by trees in amazonian forests. Science 305: 663 – 665.en_US
dc.identifier.citedreferenceFischer, M. K., W. Völkl, and K. H. Hoffmann. 2005. Honeydew production and honeydew sugar composition of polyphagous black bean aphid, Aphis fabae (Hemiptera: Aphididae) on various host plants and implications for ant‐attendance. Eur. J. Entomol. 102: 155 – 160.en_US
dc.identifier.citedreferenceFishbein, M., D. Chuba, C. Ellison, R. J. Mason‐Gamer, and S. P. Lynch. 2011. Phylogenetic relationships of Asclepias (Apocynaceae) inferred from non‐coding chloroplast DNA sequences. Syst. Bot. 36: 1008 – 1023.en_US
dc.identifier.citedreferenceFisher, D. B., J. P. Wright, and T. E. Mittler. 1984. Osmoregulation by the aphid Myzus persicae: a physiological role for honeydew oligosaccharides. J. Insect Physiol. 30: 387 – 393.en_US
dc.identifier.citedreferenceFukuyama, Y., M. Ochi, H. Kasai, and M. Kodama. 1993. Insect growth inhibitory cardenolide glycosides from Anonendron affine. Phytochemistry 32: 297 – 301.en_US
dc.identifier.citedreferenceGordon, D. M. 1987. Group‐level dynamics in harvester ants ‐ young colonies and the role of patrolling. Anim. Behav. 35: 833 – 843.en_US
dc.identifier.citedreferenceGrover, C. D., A. D. Kay, J. A. Monson, T. C. Marsh, and D. A. Holway. 2007. Linking nutrition and behavioural dominance: carbohydrate scarcity limits aggression and activity in Argentine ants. Proc. Biol. Sci. 274: 2951 – 2957.en_US
dc.identifier.citedreferenceHeinze, J., S. Foitzik, A. Hippert, and B. Holldobler. 1996. Apparent dear‐enemy phenomenon and environment‐based recognition cues in the ant Leptothorax nylanderi. Ethology 102: 510 – 522.en_US
dc.identifier.citedreferenceHelms, S. E., S. J. Connelly, and M. D. Hunter. 2004. Effects of variation among plant species on the interaction between a herbivore and its parasitoid. Ecol. Entomol. 29: 44 – 51.en_US
dc.identifier.citedreferenceHendrix, D. L., Y. A. Wei, and J. E. Leggett. 1992. Homopteran honeydew sugar composition is determined by both the insect and plant species. Comp. Biochem. Physiol. Biochem. Mol. Biol. 101: 23 – 27.en_US
dc.identifier.citedreferenceHölldobler, B., and E. O. Wilson. 1990. The ants. Bellknap Press, Cambridge, MA.en_US
dc.identifier.citedreferenceHoward, D. F., and W. R. Tschinkel. 1980. The effect of colony size and starvation on food flow in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 7: 293 – 300.en_US
dc.identifier.citedreferenceJohnson, M. T. J. 2008. Bottom‐up effects of plant genotype on aphids, ants, and predators. Ecology 89: 145 – 154.en_US
dc.identifier.citedreferenceJohnson, M. T. J., M. Vellend, and J. R. Stinchcombe. 2009. Evolution in plant populations as a driver of ecological changes in arthropod communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364: 1593 – 1605.en_US
dc.identifier.citedreferenceKatayama, N., T. Tsuchida, M. K. Hojo, and T. Ohgushi. 2013. Aphid genotype determines intensity of ant attendance: do endosymbionts and honeydew composition matter? Ann. Entomol. Soc. Am. 106: 761 – 770.en_US
dc.identifier.citedreferenceLiang, D., and J. Silverman. 2000. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87: 412 – 416.en_US
dc.identifier.citedreferenceMalcolm, S. B. 1990. Chemical defence in chewing and sucking insect herbivores: plant‐derived cardenolides in the monarch butterfly and oleander aphid. Chemoecology 1: 12 – 21.en_US
dc.identifier.citedreferenceMartel, J. W., and S. B. Malcolm. 2004. Density‐dependent reduction and induction of milkweed cardenolides by a sucking insect herbivore. J. Chem. Ecol. 30: 545 – 561.en_US
dc.identifier.citedreferenceMittler, T. E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae) II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol. 35: 74 – 84.en_US
dc.identifier.citedreferenceMolyneux, R. J., B. C. Campbell, and D. L. Dreyer. 1990. Honeydew analysis for detecting phloem transport of plant natural products ‐ implications for host‐plant resistance to sap‐sucking insects. J. Chem. Ecol. 16: 1899 – 1909.en_US
dc.identifier.citedreferenceMooney, K. A., and A. A. Agrawal. 2008. Plant genotype shapes ant‐aphid interactions: implications for community structure and indirect plant defense. Am. Nat. 171: E195 – E205.en_US
dc.identifier.citedreferenceMooney, K. A., P. Jones, and A. A. Agrawal. 2008. Coexisting congeners: demography, competition, and interactions with cardenolides for two milkweed‐feeding aphids. Oikos 117: 450 – 458.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.