Show simple item record

The effect of magnetopause motion on fast mode resonance

dc.contributor.authorHartinger, M. D.en_US
dc.contributor.authorWelling, D.en_US
dc.contributor.authorViall, N. M.en_US
dc.contributor.authorMoldwin, M. B.en_US
dc.contributor.authorRidley, A.en_US
dc.date.accessioned2014-12-09T16:53:50Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-12-09T16:53:50Z
dc.date.issued2014-10en_US
dc.identifier.citationHartinger, M. D.; Welling, D.; Viall, N. M.; Moldwin, M. B.; Ridley, A. (2014). "The effect of magnetopause motion on fast mode resonance." Journal of Geophysical Research: Space Physics 119(10): 8212-8227.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109612
dc.description.abstractThe Earth's magnetosphere supports several types of ultralow frequency (ULF) waves. These include fast mode resonance (FMR): cavity modes, waveguide modes, and tunneling modes/virtual resonance. The magnetopause, often treated as the outer boundary for cavity/waveguide modes in the dayside magnetosphere, is not stationary. A rapidly changing outer boundary condition—e.g., due to rapid magnetopause motion—is not favorable for FMR generation and may explain the sparseness of FMR observations in the outer magnetosphere. We examine how magnetopause motion affects the dayside magnetosphere's ability to sustain FMR with idealized Space Weather Modeling Framework (SWMF) simulations using the BATS‐R‐US global magnetohydrodynamic (MHD) code coupled with the Ridley Ionosphere Model (RIM). We present observations of FMR in BATS‐R‐US, reproducing results from other global MHD codes. We further show that FMR is present for a wide range of solar wind conditions, even during periods with large and rapid magnetopause displacements. We compare our simulation results to FMR observations in the dayside magnetosphere, finding that FMR occurrence does not depend on solar wind dynamic pressure, which can be used as a proxy for dynamic pressure fluctuations and magnetopause perturbations. Our results demonstrate that other explanations besides a nonstationary magnetopause—such as the inability to detect FMR in the presence of other ULF wave modes with large amplitudes—are required to explain the rarity of FMR observations in the outer magnetosphere. Key Points Typical magnetopause motion does not affect fast mode resonance occurrence Magnetopause motion cannot explain why FMR is rarely observed Selection criteria and non‐FMR wave activity affect FMR occurrence rateen_US
dc.publisherJohn Wileyen_US
dc.subject.otherGlobal Modeen_US
dc.subject.otherULF Waveen_US
dc.subject.otherFast Mode Resonanceen_US
dc.subject.otherMagnetopauseen_US
dc.subject.otherMHD Waveen_US
dc.subject.otherCavity Modeen_US
dc.titleThe effect of magnetopause motion on fast mode resonanceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109612/1/2014JA020401readme.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109612/2/Auxiliary_Material_fs01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109612/3/Auxiliary_Material_fs02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109612/4/jgra51354.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109612/5/Auxiliary_Material_fs03.pdf
dc.identifier.doi10.1002/2014JA020401en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSamsonov, A. A., D.‐G. Sibeck, and J. Imber ( 2007 ), MHD simulation for the interaction of an interplanetary shock with the Earth's magnetosphere, J. Geophys. Res., 112, A12220, doi: 10.1029/2007JA012627.en_US
dc.identifier.citedreferenceOgilvie, K. W., et al. ( 1995 ), SWE, a comprehensive plasma instrument for the wind spacecraft, Space Sci. Rev., 71, 55 – 77, doi: 10.1007/BF00751326.en_US
dc.identifier.citedreferencePlaschke, F., K.‐H. Glassmeier, H. U. Auster, V. Angelopoulos, O. D. Constantinescu, K.‐H. Fornaçon, E. Georgescu, W. Magnes, J. P. McFadden, and R. Nakamura ( 2009 ), Statistical study of the magnetopause motion: First results from THEMIS, J. Geophys. Res., 114, A00C10, doi: 10.1029/2008JA013423.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 209, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferencePulkkinen, A., et al. ( 2013 ), Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations, Space Weather, 11, 369 – 385, doi: 10.1002/swe.20056.en_US
dc.identifier.citedreferenceRickard, G. J., and A. N. Wright ( 1995 ), ULF pulsations in a magnetospheric waveguide: Comparison of real and simulated satellite data, J. Geophys. Res., 100, 3531 – 3537, doi: 10.1029/94JA02935.en_US
dc.identifier.citedreferenceRidley, A. J., and M. W. Liemohn ( 2002 ), A model‐derived storm time asymmetric ring current driven electric field description, J. Geophys. Res., 107 ( A8 ), 1151, doi: 10.1029/2001JA000051.en_US
dc.identifier.citedreferenceRidley, A., T. Gombosi, and D. De Zeeuw ( 2004 ), Ionospheric control of the magnetosphere: conductance, Ann. Geophys., 22, 567 – 584, doi: 10.5194/angeo-22-567-2004.en_US
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, I. V. Sokolov, G. Tóth, and D. T. Welling ( 2010 ), Numerical considerations in simulating the global magnetosphere, Ann. Geophys., 28, 1589 – 1614, doi: 10.5194/angeo-28-1589-2010.en_US
dc.identifier.citedreferenceSamson, J. C., B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker ( 1992 ), Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett., 19, 441 – 444, doi: 10.1029/92GL00116.en_US
dc.identifier.citedreferenceLee, D.‐H., and R. L. Lysak ( 1990 ), Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere, Geophys. Res. Lett., 17, 53, doi: 10.1029/GL017i001p00053.en_US
dc.identifier.citedreferenceSamsonov, A. A., D. G. Sibeck, N. V. Zolotova, H. K. Biernat, S. H. Chen, L. Rastaetter, H. J. Singer, and W. Baumjohann ( 2011 ), Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations, J. Geophys. Res., 116, A10216, doi: 10.1029/2011JA016706.en_US
dc.identifier.citedreferenceSinger, H. J., D.‐J. Southwood, R. J. Walker, and M. G. Kivelson ( 1981 ), Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589 – 4596, doi: 10.1029/JA086iA06p04589.en_US
dc.identifier.citedreferenceSinger, H., L. Matheson, R. Grubb, A. Newman, and D. Bouwer ( 1996 ), Monitoring space weather with the GOES magnetometers, in GOES‐8 and Beyond, Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series, vol.  2812, edited by E. R. Washwell, pp. 299 – 308, SPIE Press, Denver, Colo., doi: 10.1117/12.254077.en_US
dc.identifier.citedreferenceTakahashi, K., and A. Y. Ukhorskiy ( 2007 ), Solar wind control of Pc5 pulsation power at geosynchronous orbit, J. Geophys. Res., 112, A11205, doi: 10.1029/2007JA012483.en_US
dc.identifier.citedreferenceTakahashi, K., et al. ( 2010a ), Multipoint observation of fast mode waves trapped in the dayside plasmasphere, J. Geophys. Res., 115, A12247, doi: 10.1029/2010JA015956.en_US
dc.identifier.citedreferenceTakahashi, K., R. E. Denton, and H. J. Singer ( 2010b ), Solar cycle variation of geosynchronous plasma mass density derived from the frequency of standing Alfvén waves, J. Geophys. Res., 115, A07207, doi: 10.1029/2009JA015243.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTroitskaya, V. A., T. A. Plyasova‐Bakunina, and A. V. Gul'Elmi ( 1971 ), The connection of Pc2‐4 pulsations with the interplanetary magnetic field., Akad. Nauk SSSR Dokl., 197, 1312 – 1314.en_US
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2008 ), Inherent length‐scales of periodic solar wind number density structures, J. Geophys. Res., 113, A07101, doi: 10.1029/2007JA012881.en_US
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2009 ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 114, A01201, doi: 10.1029/2008JA013334.en_US
dc.identifier.citedreferenceWaters, C. L., K. Takahashi, D.‐H. Lee, and B. J. Anderson ( 2002 ), Detection of ultralow‐frequency cavity modes using spacecraft data, J. Geophys. Res., 107 ( A10 ), 1284, doi: 10.1029/2001JA000224.en_US
dc.identifier.citedreferenceWelling, D. T., and A. J. Ridley ( 2010 ), Exploring sources of magnetospheric plasma using multispecies MHD, J. Geophys. Res., 115, A04201, doi: 10.1029/2009JA014596.en_US
dc.identifier.citedreferenceYu, Y. Q., and A. J. Ridley ( 2011 ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, J. Geophys. Res., 116, A04210, doi: 10.1029/2010JA015871.en_US
dc.identifier.citedreferenceZhu, X., and M. G. Kivelson ( 1989 ), Global mode ULF pulsations in a magnetosphere with a nonmonotonic Alfven velocity profile, J. Geophys. Res., 94, 1479 – 1485, doi: 10.1029/JA094iA02p01479.en_US
dc.identifier.citedreferenceLee, D.‐H., and R. L. Lysak ( 1991 ), Monochromatic ULF wave excitation in the dipole magnetosphere, J. Geophys. Res., 96 ( A4 ), 5811 – 5817, doi: 10.1029/90JA01592.en_US
dc.identifier.citedreferenceAllan, W., E. M. Poulter, and J. R. Manuel ( 1991 ), Magnetospheric cavity modes: Some nonlinear effects, J. Geophys. Res., 96, 11,461 – 11,473, doi: 10.1029/91JA00657.en_US
dc.identifier.citedreferenceBalazs, N. L. ( 1961 ), On the solution of the wave equation with moving boundaries, J. Math Anal. Appl., 3 ( 3 ), 472 – 484, doi: 10.1016/0022-247X(61)90071-3.en_US
dc.identifier.citedreferenceBoris, J. P. ( 1970 ), A physically motivated solution of the Alfvén problem, Tech. Rep. NRL Memorandum Rep., 2167, Naval Research Laboratory, Washington, D. C.en_US
dc.identifier.citedreferenceClaudepierre, S. G., M. Wiltberger, S. R. Elkington, W. Lotko, and M. K. Hudson ( 2009 ), Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations, Geophys. Res. Lett., 36, L13101, doi: 10.1029/2009GL039045.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 2003 ), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108 ( A3 ), 1116, doi: 10.1029/2001JA009202.en_US
dc.identifier.citedreferenceEngebretson, M. J., L. J. Zanetti, T. A. Potemra, and M. H. Acuna ( 1986 ), Harmonically structured ULF pulsations observed by the AMPTE CCE magnetic field experiment, Geophys. Res. Lett., 13, 905 – 908, doi: 10.1029/GL013i009p00905.en_US
dc.identifier.citedreferenceGombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semirelativistic magnetohydrodynamics and physics‐based convergence acceleration, J. Comput. Phys., 177, 176 – 205, doi: 10.1006/jcph.2002.7009.en_US
dc.identifier.citedreferenceHartinger, M., V. Angelopoulos, M. B. Moldwin, Y. Nishimura, D. L. Turner, K.‐H. Glassmeier, M. G. Kivelson, J. Matzka, and C. Stolle ( 2012 ), Observations of a Pc5 global (cavity/waveguide) mode outside the plasmasphere by THEMIS, J. Geophys. Res., 117, A06202, doi: 10.1029/2011JA017266.en_US
dc.identifier.citedreferenceHartinger, M. D., V. Angelopoulos, M. B. Moldwin, K. Takahashi, and L. B. N. Clausen ( 2013a ), Statistical study of global modes outside the plasmasphere, J. Geophys. Res. Space Physics, 118, 804 – 822, doi: 10.1002/jgra.50140.en_US
dc.identifier.citedreferenceHartinger, M. D., D. L. Turner, F. Plaschke, V. Angelopoulos, and H. J. Singer ( 2013b ), The role of transient ion foreshock phenomena in driving Pc5 ULF wave activity, J. Geophys. Res. Space Physics, 118, 299 – 312, doi: 10.1029/2012JA018349.en_US
dc.identifier.citedreferenceHudson, M. K., D. N. Baker, J. Goldstein, B. T. Kress, J. Paral, F. R. Toffoletto, and M. Wiltberger ( 2014 ), Simulated magnetopause losses and Van Allen Probe flux dropouts, Geophys. Res. Lett., 41, 1113 – 1118, doi: 10.1002/2014GL059222.en_US
dc.identifier.citedreferenceJacobs, J. A., Y. Kato, S. Matsushita, and V. A. Troitskaya ( 1964 ), Classification of geomagnetic micropulsations, J. Geophys. Res., 69, 180 – 181, doi: 10.1029/JZ069i001p00180.en_US
dc.identifier.citedreferenceKepko, L., H. E. Spence, and H. J. Singer ( 2002 ), ULF waves in the solar wind as direct drivers of magnetospheric pulsations, Geophys. Res. Lett., 29 ( 8 ), 1197, doi: 10.1029/2001GL014405.en_US
dc.identifier.citedreferenceKivelson, M. G., J. Etcheto, and J. G. Trotignon ( 1984 ), Global compressional oscillations of the terrestrial magnetosphere—The evidence and a model, J. Geophys. Res., 89, 9851 – 9856, doi: 10.1029/JA089iA11p09851.en_US
dc.identifier.citedreferenceKivelson, M., M. Cao, R. McPherron, and R. Walker ( 1997 ), A possible signature of magnetic cavity mode oscillations in ISEE spacecraft observations, J. Geomagn. Geoelec., 49 ( 9 ), 1079 – 1098.en_US
dc.identifier.citedreferenceKusse, B., and E. Westwig ( 1998 ), Mathematical Physics: Applied Mathematics for Scientists and Engineers, John Wiley, New York.en_US
dc.identifier.citedreferenceLee, D.‐H. ( 1996 ), Dynamics of MHD wave propagation in the low‐latitude magnetosphere, J. Geophys. Res., 101, 15,371 – 15,386, doi: 10.1029/96JA00608.en_US
dc.identifier.citedreferenceLee, D.‐H., and R. L. Lysak ( 1999 ), MHD waves in a three‐dimensional dipolar magnetic field: A search for Pi2 pulsations, J. Geophys. Res., 104, 28,691 – 28,700, doi: 10.1029/1999JA900377.en_US
dc.identifier.citedreferenceLyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333 – 1350, doi: 10.1016/j.jastp.2004.03.020.en_US
dc.identifier.citedreferenceMann, I. R., G. Chisham, and S. D. Bale ( 1998 ), Multisatellite and ground‐based observations of a tailward propagating Pc5 magnetospheric waveguide mode, J. Geophys. Res., 103, 4657 – 4670, doi: 10.1029/97JA03175.en_US
dc.identifier.citedreferenceMoldwin, M. B., L. Downward, H. K. Rassoul, R. Amin, and R. R. Anderson ( 2002 ), A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 107 ( A11 ), 1339, doi: 10.1029/2001JA009211.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.