Show simple item record

ATF 4 activity: a common feature shared by many kinds of slow‐aging mice

dc.contributor.authorLi, Weiquanen_US
dc.contributor.authorLi, Xinnaen_US
dc.contributor.authorMiller, Richard A.en_US
dc.date.accessioned2014-12-09T16:53:56Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-12-09T16:53:56Z
dc.date.issued2014-12en_US
dc.identifier.citationLi, Weiquan; Li, Xinna; Miller, Richard A. (2014). " ATF 4 activity: a common feature shared by many kinds of slow‐aging mice." Aging Cell 13(6): 1012-1018.en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109625
dc.publisherCharles C Thomasen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherLongevityen_US
dc.subject.otherAcarboseen_US
dc.subject.otherMethionine Restrictionen_US
dc.subject.otherRapamycinen_US
dc.subject.otherCaloric Restrictionen_US
dc.titleATF 4 activity: a common feature shared by many kinds of slow‐aging miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109625/1/acel12264.pdf
dc.identifier.doi10.1111/acel.12264en_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceWang C, Li Q, Redden DT, Weindruch R, Allison DB ( 2004 ) Statistical methods for testing effects on “maximum lifespan”. Mech. Ageing Dev. 125, 629 – 632.en_US
dc.identifier.citedreferenceMiller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de CR, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R ( 2011 ) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 66, 191 – 201.en_US
dc.identifier.citedreferenceMiller RA, Harrison DE, Astle CM, Fernandez E, Flurkey K, Han M, Javors MA, Li X, Nadon NL, Nelson JF, Pletcher S, Salmon AB, Sharp ZD, Van Roekel S, Winkleman L, Strong R ( 2014 ) Rapamycin‐mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction. Aging Cell 13, 468 – 477.en_US
dc.identifier.citedreferenceNeff F, Flores‐Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, Afonso LC, Aguilar‐Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Holter SM, Moreth K, Prehn C, Puk O, Racz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Hofler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus‐Durner V, Hrabe de Angelis M, Ehninger D ( 2013 ) Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123, 3272 – 3291.en_US
dc.identifier.citedreferenceRen Y, Roy S, Ding Y, Iqbal J, Broome JD ( 2004 ) Methylation of the asparagine synthetase promoter in human leukemic cell lines is associated with a specific methyl binding protein. Oncogene 23, 3953 – 3961.en_US
dc.identifier.citedreferenceSadagurski M, Landeryou T, Blandino‐Rosano M, Cady G, Elghazi L, Meister D, See L, Bartke A, Bernal‐Mizrachi E, Miller RA ( 2014 ) Long‐lived crowded‐litter mice exhibit lasting effects on insulin sensitivity and energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 306, E1305 – E1314.en_US
dc.identifier.citedreferenceSteffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M ( 2008 ) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133, 292 – 302.en_US
dc.identifier.citedreferenceSteinbaugh MJ, Sun LY, Bartke A, Miller RA ( 2012 ) Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am. J. Physiol. Endocrinol. Metab. 303, E488 – E495.en_US
dc.identifier.citedreferenceSu N, Thiaville MM, Awad K, Gjymishka A, Brant JO, Yang TP, Kilberg MS ( 2009 ) Protein or amino acid deprivation differentially regulates the hepatic forkhead box protein A (FOXA) genes through an activating transcription factor‐4‐independent pathway. Hepatology 50, 282 – 290.en_US
dc.identifier.citedreferenceSugiyama RH, Arfin SM, Harris M ( 1983 ) Properties of asparagine synthetase in asparagine‐independent variants of jensen rat sarcoma‐cells induced by 5‐azacytidine. Mol. Cell. Biol. 3, 1937 – 1942.en_US
dc.identifier.citedreferenceSun L, Sadighi Akha AA, Miller RA, Harper JM ( 2009 ) Life‐span extension in mice by preweaning food restriction and by methionine restriction in middle age. J. Gerontol. A Biol. Sci. Med. Sci. 64, 711 – 722.en_US
dc.identifier.citedreferenceTanaka T, Tsujimura T, Takeda K, Sugihara A, Maekawa A, Terada N, Yoshida N, Akira S ( 1998 ) Targeted disruption of ATF4 discloses its essential role in the formation of eye lens fibres. Genes Cells 3, 801 – 810.en_US
dc.identifier.citedreferenceWang CX, Huang ZY, Du Y, Cheng Y, Chen SH, Guo FF ( 2010 ) ATF4 regulates lipid metabolism and thermogenesis. Cell Res. 20, 174 – 184.en_US
dc.identifier.citedreferenceWang XQ, Wang GB, Kunte M, Shinde V, Gorbatyuk M ( 2013 ) Modulation of Angiogenesis by Genetic Manipulation of ATF4 in a Mouse Modulation of Angiogenesis by Genetic Manipulation. Invest. Ophthalmol. Vis. Sci. 54, 5995 – 6002.en_US
dc.identifier.citedreferenceWeindruch R, Walford RL ( 1988 ) The Retardation of Aging and Disease by Dietary Restriction. Springfield, IL: Charles C Thomas.en_US
dc.identifier.citedreferenceWilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA ( 2012 ) Rapamycin slows aging in mice. Aging Cell 11, 675 – 682.en_US
dc.identifier.citedreferenceYamamoto M, Otsuki M ( 2006 ) Effect of inhibition of alpha‐glucosidase on age‐related glucose intolerance and pancreatic atrophy in rats. Metabolism 55, 533 – 540.en_US
dc.identifier.citedreferenceYoshizawa T, Hinoi E, Jung DY, Kajimura D, Ferron M, Seo J, Graff JM, Kim JK, Karsenty G ( 2009 ) The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. J. Clin. Invest. 119, 2807 – 2817.en_US
dc.identifier.citedreferenceZhang Q, Yu J, Liu B, Lv Z, Xia T, Xiao F, Chen S, Guo F ( 2013 ) Central activating transcription factor 4 (ATF4) regulates hepatic insulin resistance in mice via S6K1 signaling and the vagus nerve. Diabetes 62, 2230 – 2239.en_US
dc.identifier.citedreferenceZhou DH, Palam LR, Jiang L, Narasimhan J, Staschke KA, Wek RC ( 2008 ) Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J. Biol. Chem. 283, 7064 – 7073.en_US
dc.identifier.citedreferenceZhu K, Jiao HL, Li S, Cao HL, Galson DL, Zhao ZF, Zhao X, Lai YM, Fan J, Im HJ, Chen D, Xiao GZ ( 2013 ) ATF4 promotes bone angiogenesis by increasing vegf expression and release in the bone environment. J. Bone Miner. Res. 28, 1870 – 1884.en_US
dc.identifier.citedreferenceZimmerman JA, Malloy V, Krajcik R, Orentreich N ( 2003 ) Nutritional control of aging. Exp. Gerontol. 38, 47 – 52.en_US
dc.identifier.citedreferenceAl Sarraj J, Vinson C, Thiel G ( 2005 ) Regulation of asparagine synthetase gene transcription by the basic region leucine zipper transcription factors ATF5 and CHOP. Biol. Chem. 386, 873 – 879.en_US
dc.identifier.citedreferenceCaccamo A, Majumder S, Richardson A, Strong R, Oddo S ( 2010 ) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid‐beta, and Tau: effects on cognitive impairments. J. Biol. Chem. 285, 13107 – 13120.en_US
dc.identifier.citedreferenceChen C, Liu Y, Liu Y, Zheng P ( 2009 ) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci. Signal. 2, ra75.en_US
dc.identifier.citedreferenceConover CA, Bale LK ( 2007 ) Loss of pregnancy‐associated plasma protein A extends lifespan in mice. Aging Cell 6, 727 – 729.en_US
dc.identifier.citedreferenceCosta‐Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, Sossin W, Kaufman R, Pelletier J, Rosenblum K, Krnjevic K, Lacaille JC, Nader K, Sonenberg N ( 2007 ) eIF2alpha phosphorylation bidirectionally regulates the switch from short‐ to long‐term synaptic plasticity and memory. Cell 129, 195 – 206.en_US
dc.identifier.citedreferenceEbert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM ( 2010 ) The transcription factor ATF4 promotes skeletal muscle fiber atrophy during fasting. Mol. Endo. 24, 790 – 799.en_US
dc.identifier.citedreferenceFlurkey K, Astle CM, Harrison DE ( 2010 ) Life extension by diet restriction and N‐acetyl‐L‐cysteine in genetically heterogeneous mice. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1275 – 1284.en_US
dc.identifier.citedreferenceHarding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D ( 2003 ) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11, 619 – 633.en_US
dc.identifier.citedreferenceHarrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA ( 2009 ) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392 – 395.en_US
dc.identifier.citedreferenceHarrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA ( 2014 ) Acarbose, 17‐alpha‐estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13, 273 – 282.en_US
dc.identifier.citedreferenceHinojosa CA, Mgbemena V, Van Roekel S, Austad SN, Miller RA, Bose S, Orihuela CJ ( 2012 ) Enteric‐delivered rapamycin enhances resistance of aged mice to pneumococcal pneumonia through reduced cellular senescence. Exp. Gerontol. 47, 958 – 965.en_US
dc.identifier.citedreferenceJohnson SC, Rabinovitch PS, Kaeberlein M ( 2013 ) mTOR is a key modulator of ageing and age‐related disease. Nature 493, 338 – 345.en_US
dc.identifier.citedreferenceLi W, Miller RA ( 2014 ) Elevated ATF4 function in fibroblasts and liver of slow‐aging mutant mice. J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glu040.en_US
dc.identifier.citedreferenceMasuoka HC, Townes TM ( 2002 ) Targeted disruption of the activating transcription factor 4 gene results in severe fetal anemia in mice. Blood 99, 736 – 745.en_US
dc.identifier.citedreferenceMiller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith‐Wheelock M ( 2005 ) Methionine‐deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF‐I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4, 119 – 125.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.