Show simple item record

The Bone Marrow Endosteal Niche: How Far from the Surface?

dc.contributor.authorCordeiro‐spinetti, Ericen_US
dc.contributor.authorTaichman, Russell S.en_US
dc.contributor.authorBalduino, Alexen_US
dc.date.accessioned2014-12-09T16:54:02Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationCordeiro‐spinetti, Eric ; Taichman, Russell S.; Balduino, Alex (2015). "The Bone Marrow Endosteal Niche: How Far from the Surface?." Journal of Cellular Biochemistry 116(1): 6-11.en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109640
dc.description.abstractaaHematopoietic stem cells (HSC) self‐renewal takes place in the same microenvironment in which massive hematopoietic progenitor proliferation, commitment, and differentiation will occur. This is only made possible if the bone marrow microenvironment comprises different specific niches, composed by different stromal cells that work in harmony to regulate all the steps of the hematopoiesis cascade. Histological and functional assays indicated that HSC and multipotent progenitors preferentially colonize the endosteal and subendosteal regions, in close association with the bone surface. Conversely, committed progenitors and differentiated cells are distributed in the central and perisinusoidal regions, respectively. Over the last decade, many investigative teams sought to define which cell types regulate the HSC niche, how they are organized, and to what extent they interface with each other. System dynamics requires different stromal cells to operate distinct functions over similar HSC pools rather than a single stromal cell type controlling everything. Therefore, our focus herein is to depict the players in the endosteal and subendosteal regions, named the endosteal niche, a necessary step to better understand the interactions of the HSC within the niche and to identify potential targets to manipulate and/or modulate normal and malignant HSC behavior. J. Cell. Biochem. 116: 6–11, 2015. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherIN VIVOen_US
dc.subject.otherBONE MARROWen_US
dc.subject.otherHEMATOPOIETIC STEM CELLSen_US
dc.subject.otherOSTEOBLASTen_US
dc.subject.otherENDOSTEUMen_US
dc.subject.otherNICHEen_US
dc.titleThe Bone Marrow Endosteal Niche: How Far from the Surface?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109640/1/jcb24952.pdf
dc.identifier.doi10.1002/jcb.24952en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferenceSiminovitch L, McCulloch EA, Till JE. 1963. The distribution of colony‐­forming cells among spleen colonies. J Cell Physiol 62: 327 – 336.en_US
dc.identifier.citedreferenceMorrison SJ, Uchida N, Weissman IL. 1995. The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11: 35 – 71.en_US
dc.identifier.citedreferenceNakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y, Matsumoto Y, Yoshihara H, Suda T. 2010. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 116: 1422 – 1432.en_US
dc.identifier.citedreferenceNakamura‐­Ishizu A, Suda T. 2013. Hematopoietic stem cell niche: An interplay among a repertoire of multiple functional niches. Biochim Biophys Acta 1830: 2404 – 2409.en_US
dc.identifier.citedreferenceNakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. 2002. The novel zinc finger‐­containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108: 17 – 29.en_US
dc.identifier.citedreferenceNilsson SK, Johnston HM, Coverdale JA. 2001. Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches. Blood 97: 2293 – 2299.en_US
dc.identifier.citedreferenceNombela‐Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park S‐­Y, Lu J, Protopopov A, Silberstein LE. 2013. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 15: 533 – 543.en_US
dc.identifier.citedreferenceOguro H, Ding L, Morrison SJ. 2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13: 102 – 116.en_US
dc.identifier.citedreferenceParmar K, Mauch P, Vergilio J‐­A, Sackstein R, Down JD. 2007. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 104: 5431 – 5436.en_US
dc.identifier.citedreferenceSchofield R. 1978. The relationship between the spleen colony‐­forming cell and the haemopoietic stem cell. Blood Cells 4: 7 – 25.en_US
dc.identifier.citedreferenceSeita J, Weissman IL. 2010. Hematopoietic stem cell: self‐­renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2: 640 – 653.en_US
dc.identifier.citedreferenceSerafini M, Dylla SJ, Oki M, Heremans Y, Tolar J, Jiang Y, Buckley SM, Pelacho B, Burns TC, Frommer S, et al. 2007. Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long‐­term hematopoietic stem cells. J Exp Med 204: 129 – 139.en_US
dc.identifier.citedreferenceStein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi J‐­Y, Pockwinse SM. 2004. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 23: 4315 – 4329.en_US
dc.identifier.citedreferenceStier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grünewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201: 1781 – 1791.en_US
dc.identifier.citedreferenceSugiyama T, Kohara H, Noda M, Nagasawa T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12‐­CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25: 977 – 988.en_US
dc.identifier.citedreferenceTaichman RS. 2005. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem‐­cell niche. Blood 105: 2631 – 2639.en_US
dc.identifier.citedreferenceTaichman RS, Emerson SG. 1994. Human osteoblasts support hematopoiesis through the production of granulocyte colony‐­stimulating factor. J Exp Med 179: 1677 – 1682.en_US
dc.identifier.citedreferenceTaichman RS, Emerson SG. 1998. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells 16: 7 – 15.en_US
dc.identifier.citedreferenceTaichman RS, Reilly MJ, Emerson SG. 1996. Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 87: 518 – 524.en_US
dc.identifier.citedreferenceTaichman RS, Wang Z, Shiozawa Y, Jung Y, Song J, Balduino A, Wang J, Patel LR, Havens AM, Kucia M, et al. 2010. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 19: 1557 – 1570.en_US
dc.identifier.citedreferenceTill JE, McCulloch EA. 1963. Early repair processes in marrow cells irradiated and proliferating in vivo. Radiat Res 18: 96 – 105.en_US
dc.identifier.citedreferenceTill JE, McCulloch EA, Siminovitch L. 1964. A stochastic model of stem cell proliferation, based on the growth of spleen colony‐­forming cells. Proc Natl Acad Sci U S A 51: 29 – 36.en_US
dc.identifier.citedreferenceVisnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103: 3258 – 3264.en_US
dc.identifier.citedreferenceWilson A, Trumpp A. 2006. Bone‐­marrow haematopoietic‐­stem‐­cell niches. Nat Rev Immunol 6: 93 – 106.en_US
dc.identifier.citedreferenceZhang J, Niu C, Ye L, Huang H, He X, Tong W‐­G, Ross J, Haug J, Johnson T, Feng JQ, et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836 – 841.en_US
dc.identifier.citedreferenceArai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. 2004. Tie2/angiopoietin‐1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118 ( 2 ): 149 – 161.en_US
dc.identifier.citedreferenceAubin JE. 1998. Advances in the osteoblast lineage. Biochem Cell Biol 76: 899 – 910.en_US
dc.identifier.citedreferenceAubin JE, Liu F, Malaval L, Gupta AK. 1995. Osteoblast and chondroblast differentiation. Bone 17: 77S – 83S.en_US
dc.identifier.citedreferenceBalduino A, Hurtado SP, Frazão P, Takiya CM, Alves LM, Nasciutti L‐­E, El‐­ Cheikh, Borojevic MC. 2005. Bone marrow subendosteal microenvironment harbours functionally distinct haemosupportive stromal cell populations. Cell Tissue Res 319: 255 – 266.en_US
dc.identifier.citedreferenceBalduino A, Mello‐­Coelho V, Wang Z, Taichman RS, Krebsbach PH, Weeraratna AT, Becker KG, de Mello W, Taub DD, Borojevic R. 2012. Molecular signature and in vivo behavior of bone marrow endosteal and subendosteal stromal cell populations and their relevance to hematopoiesis. Exp Cell Res 318: 2427 – 2437.en_US
dc.identifier.citedreferenceCalvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425: 841 – 846.en_US
dc.identifier.citedreferenceLo Celso, Fleming C, Wu HE, Zhao JW, Miake‐­Lye CX, Fujisaki S, Côté J, Rowe D, Lin DW, Scadden CP. 2009. Live‐­animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457: 92 – 96.en_US
dc.identifier.citedreferenceCheng Y‐­H, Chitteti BR, Streicher DA, Morgan JA, Rodriguez‐­Rodriguez S, Carlesso N, Srour EF, Kacena MA. 2011. Impact of maturational status on the ability of osteoblasts to enhance the hematopoietic function of stem and progenitor cells. J Bone Miner Res 26: 1111 – 1121.en_US
dc.identifier.citedreferenceChitteti BR, Cheng Y‐H, Streicher DA, Rodriguez‐­Rodriguez S, Carlesso N, Srour EF, Kacena MA. 2010. Osteoblast lineage cells expressing high levels of Runx2 enhance hematopoietic progenitor cell proliferation and function. J Cell Biochem 111: 284 – 294.en_US
dc.identifier.citedreferenceChitteti BR, Cheng Y‐­H, Kacena MA, Srour EF. 2013. Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone 54: 58 – 67.en_US
dc.identifier.citedreferenceChitteti BR, Kobayashi M, Cheng Y, Zhang H, Poteat BA, Broxmeyer HE, Pelus LM, Hanenberg H, Zollman A, Kamocka MM, et al. 2014. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood 124: 519 – 529.en_US
dc.identifier.citedreferenceDing L, Saunders TL, Enikolopov G, Morrison SJ. 2012. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481: 457 – 462.en_US
dc.identifier.citedreferenceDucy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. 1997. Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89: 747 – 754.en_US
dc.identifier.citedreferenceGreenbaum A, Hsu Y‐­MS, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC. 2013. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem‐­cell maintenance. Nature 495: 227 – 230.en_US
dc.identifier.citedreferenceJung Y, Wang J, Schneider A, Sun Y‐­X, Koh‐­Paige AJ, Osman NI, McCauley LK, Taichman RS. 2006. Regulation of SDF‐­1 (CXCL12) production by osteoblasts: A possible mechanism for stem cell homing. Bone 38: 497 – 508.en_US
dc.identifier.citedreferenceKiel MJ, Iwashita T, Yilmaz OH, Morrison SJ. 2005. Spatial differences in hematopoiesis but not in stem cells indicate a lack of regional patterning in definitive hematopoietic stem cells. Dev Biol 283: 29 – 39.en_US
dc.identifier.citedreferenceKiel MJ, Radice GL, Morrison SJ. 2007. Lack of evidence that hematopoietic stem cells depend on N‐­cadherin‐­mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 1: 204 – 217.en_US
dc.identifier.citedreferenceKiel MJ, Acar M, Radice GL, Morrison SJ. 2009. Hematopoietic stem cells do not depend on N‐­cadherin to regulate their maintenance. Cell Stem Cell 4: 170 – 179.en_US
dc.identifier.citedreferenceKomori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89: 755 – 764.en_US
dc.identifier.citedreferenceKuznetsov SA, Riminucci M, Ziran N, Tsutsui TW, Corsi A, Calvi L, Kronenberg HM, Schipani E, Robey PG, Bianco P. 2004. The interplay of osteogenesis and hematopoiesis: Expression of a constitutively active PTH/PTHrP receptor in osteogenic cells perturbs the establishment of hematopoiesis in bone and of skeletal stem cells in the bone marrow. J Cell Biol 167: 1113 – 1122.en_US
dc.identifier.citedreferenceLambertsen RH, Weiss L. 1984. A model of intramedullary hematopoietic microenvironments based on stereologic study of the distribution of endocloned marrow colonies. Blood 63: 287 – 297.en_US
dc.identifier.citedreferenceLogan AC, Weissman IL, Shizuru JA. 2012. The road to purified hematopoietic stem cell transplants is paved with antibodies. Curr Opin Immunol 24: 640 – 648.en_US
dc.identifier.citedreferenceLord BI, Testa NG, Hendry JH. 1975. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46: 65 – 72.en_US
dc.identifier.citedreferenceMorrison SJ, Scadden DT. 2014. The bone marrow niche for haematopoietic stem cells. Nature 505: 327 – 334.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.