Show simple item record

Distinct conformational behaviors of four mammalian dual‐flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles

dc.contributor.authorHaque, Mohammad M.en_US
dc.contributor.authorBayachou, Mekkien_US
dc.contributor.authorTejero, Jesusen_US
dc.contributor.authorKenney, Claire T.en_US
dc.contributor.authorPearl, Naw M.en_US
dc.contributor.authorIm, Sang‐choulen_US
dc.contributor.authorWaskell, Lucyen_US
dc.contributor.authorStuehr, Dennis J.en_US
dc.date.accessioned2014-12-09T16:54:07Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-12-09T16:54:07Z
dc.date.issued2014-12en_US
dc.identifier.citationHaque, Mohammad M.; Bayachou, Mekki; Tejero, Jesus; Kenney, Claire T.; Pearl, Naw M.; Im, Sang‐choul ; Waskell, Lucy; Stuehr, Dennis J. (2014). "Distinct conformational behaviors of four mammalian dualâ flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profiles." FEBS Journal 281(23): 5325-5340.en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109651
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherConformational Equilibriumen_US
dc.subject.otherFlavoproteinen_US
dc.subject.otherKinetic Modelen_US
dc.subject.otherNitric Oxideen_US
dc.subject.otherElectron Transferen_US
dc.titleDistinct conformational behaviors of four mammalian dual‐flavin reductases (cytochrome P450 reductase, methionine synthase reductase, neuronal nitric oxide synthase, endothelial nitric oxide synthase) determine their unique catalytic profilesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109651/1/febs13073.pdf
dc.identifier.doi10.1111/febs.13073en_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceBrenner S, Hay S, Munro AW & Scrutton NS ( 2008 ) Inter‐flavin electron transfer in cytochrome P450 reductase ‐ effects of solvent and pH identify hidden complexity in mechanism. FEBS J 275, 4540 – 4557.en_US
dc.identifier.citedreferenceHay S, Brenner S, Khara B, Quinn AM, Rigby SE & Scrutton NS ( 2010 ) Nature of the energy landscape for gated electron transfer in a dynamic redox protein. J Am Chem Soc 132, 9738 – 9745.en_US
dc.identifier.citedreferenceEllis J, Gutierrez A, Barsukov IL, Huang WC, Grossmann JG & Roberts GC ( 2009 ) Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small‐angle x‐ray scattering. J Biol Chem 284, 36628 – 36637.en_US
dc.identifier.citedreferenceHuang WC, Ellis J, Moody PC, Raven EL & Roberts GC ( 2013 ) Redox‐linked domain movements in the catalytic cycle of cytochrome p450 reductase. Structure 21, 1581 – 1589.en_US
dc.identifier.citedreferencePersechini A, Tran QK, Black DJ & Gogol EP ( 2013 ) Calmodulin‐induced structural changes in endothelial nitric oxide synthase. FEBS Lett 587, 297 – 301.en_US
dc.identifier.citedreferenceLeys D, Basran J, Talfournier F, Sutcliffe MJ & Scrutton NS ( 2003 ) Extensive conformational sampling in a ternary electron transfer complex. Nat Struct Biol 10, 219 – 225.en_US
dc.identifier.citedreferenceToogood HS, Leys D & Scrutton NS ( 2007 ) Dynamics driving function: new insights from electron transferring flavoproteins and partner complexes. FEBS J 274, 5481 – 5504.en_US
dc.identifier.citedreferencePudney CR, Khara B, Johannissen LO & Scrutton NS ( 2011 ) Coupled motions direct electrons along human microsomal P450 Chains. PLoS Biol 9, e1001222.en_US
dc.identifier.citedreferenceGutierrez A, Munro AW, Grunau A, Wolf CR, Scrutton NS & Roberts GC ( 2003 ) Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues. Eur J Biochem 270, 2612 – 2621.en_US
dc.identifier.citedreferenceLeferink NG, Pudney CR, Brenner S, Heyes DJ, Eady RR, Samar HS, Hay S, Rigby SE & Scrutton NS ( 2012 ) Gating mechanisms for biological electron transfer: integrating structure with biophysics reveals the nature of redox control in cytochrome P450 reductase and copper‐dependent nitrite reductase. FEBS Lett 586, 578 – 584.en_US
dc.identifier.citedreferenceGutierrez A, Grunau A, Paine M, Munro AW, Wolf CR, Roberts GC & Scrutton NS ( 2003 ) Electron transfer in human cytochrome P450 reductase. Biochem Soc Trans 31, 497 – 501.en_US
dc.identifier.citedreferenceAbu‐Soud HM, Yoho LL & Stuehr DJ ( 1994 ) Calmodulin controls neuronal nitric‐oxide synthase by a dual mechanism. Activation of intra‐ and interdomain electron transfer. J Biol Chem 269, 32047 – 32050.en_US
dc.identifier.citedreferenceChen PF & Wu KK ( 2003 ) Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric‐oxide synthase. J Biol Chem 278, 52392 – 52400.en_US
dc.identifier.citedreferenceDaff S ( 2003 ) Calmodulin‐dependent regulation of mammalian nitric oxide synthase. Biochem Soc Trans 31, 502 – 505.en_US
dc.identifier.citedreferenceMatsuda H & Iyanagi T ( 1999 ) Calmodulin activates intramolecular electron transfer between the two flavins of neuronal nitric oxide synthase flavin domain. Biochim Biophys Acta 1473, 345 – 355.en_US
dc.identifier.citedreferenceWu PR, Kuo CC, Yet SF, Liou JY, Wu KK & Chen PF ( 2012 ) Lobe‐specific calcium binding in calmodulin regulates endothelial nitric oxide synthase activation. PLoS One 7, e39851.en_US
dc.identifier.citedreferenceRoman LJ & Masters BS ( 2006 ) Electron transfer by neuronal nitric oxide synthase is regulated by concerted interaction of calmodulin and two intrinsic regulatory elements. J Biol Chem 281, 23111 – 23118.en_US
dc.identifier.citedreferenceHaque MM, Panda K, Tejero J, Aulak KS, Fadlalla MA, Mustovich AT & Stuehr DJ ( 2007 ) A connecting hinge represses the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 9254 – 9259.en_US
dc.identifier.citedreferenceSalerno JC, Harris DE, Irizarry K, Patel B, Morales AJ, Smith SM, Martasek P, Roman LJ, Masters BS, Jones CL et al. ( 1997 ) An autoinhibitory control element defines calcium‐regulated isoforms of nitric oxide synthase. J Biol Chem 272, 29769 – 29777.en_US
dc.identifier.citedreferenceWolthers KR, Lou X, Toogood HS, Leys D & Scrutton NS ( 2007 ) Mechanism of coenzyme binding to human methionine synthase reductase revealed through the crystal structure of the FNR‐like module and isothermal titration calorimetry. Biochemistry 46, 11833 – 11844.en_US
dc.identifier.citedreferenceGrunau A, Geraki K, Grossmann JG & Gutierrez A ( 2007 ) Conformational dynamics and the energetics of protein–ligand interactions: role of interdomain loop in human cytochrome P450 reductase. Biochemistry 46, 8244 – 8255.en_US
dc.identifier.citedreferenceHaque MM, Fadlalla MA, Aulak KS, Ghosh A, Durra D & Stuehr DJ ( 2012 ) Control of electron transfer and catalysis in neuronal nitric‐oxide synthase (nNOS) by a hinge connecting its FMN and FAD‐NADPH domains. J Biol Chem 287, 30105 – 30116.en_US
dc.identifier.citedreferenceMendes P ( 1993 ) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9, 563 – 571.en_US
dc.identifier.citedreferenceBiasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L et al. ( 2014 ) SWISS‐MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42, W252 – W258.en_US
dc.identifier.citedreferenceBasse MJ, Betzi S, Bourgeas R, Bouzidi S, Chetrit B, Hamon V, Morelli X & Roche P ( 2013 ) 2P2Idb: a structural database dedicated to orthosteric modulation of protein‐protein interactions. Nucleic Acids Res 41, D824 – D827.en_US
dc.identifier.citedreferenceAigrain L, Fatemi F, Frances O, Lescop E & Truan G ( 2012 ) Dynamic control of electron transfers in diflavin reductases. Int J Mol Sci 13, 15012 – 15041.en_US
dc.identifier.citedreferenceDe Colibus L & Mattevi A ( 2006 ) New frontiers in structural flavoenzymology. Curr Opin Struct Biol 16, 722 – 728.en_US
dc.identifier.citedreferenceIyanagi T ( 2005 ) Structure and function of NADPH‐cytochrome P450 reductase and nitric oxide synthase reductase domain. Biochem Biophys Res Commun 338, 520 – 528.en_US
dc.identifier.citedreferenceJoosten V & van Berkel WJ ( 2007 ) Flavoenzymes. Curr Opin Chem Biol 11, 195 – 202.en_US
dc.identifier.citedreferenceGomez‐Moreno C ( 2009 ) New roles of flavoproteins in molecular cell biology. FEBS J 276, 4289.en_US
dc.identifier.citedreferenceIyanagi T, Xia C & Kim JJ ( 2012 ) NADPH‐cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family. Arch Biochem Biophys 528, 72 – 89.en_US
dc.identifier.citedreferencePorter TD & Kasper CB ( 1986 ) NADPH‐cytochrome P‐450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry 25, 1682 – 1687.en_US
dc.identifier.citedreferencePorter TD ( 1991 ) An unusual yet strongly conserved flavoprotein reductase in bacteria and mammals. Trends Biochem Sci 16, 154 – 158.en_US
dc.identifier.citedreferenceMurataliev MB, Feyereisen R & Walker FA ( 2004 ) Electron transfer by diflavin reductases. Biochim Biophys Acta 1698, 1 – 26.en_US
dc.identifier.citedreferenceIyanagi T & Mason HS ( 1973 ) Some properties of hepatic reduced nicotinamide adenine dinucleotide phosphate‐cytochrome c reductase. Biochemistry 12, 2297 – 2308.en_US
dc.identifier.citedreferenceVermilion JL & Coon MJ ( 1978 ) Purified liver microsomal NADPH‐cytochrome P‐450 reductase. Spectral characterization of oxidation‐reduction states. J Biol Chem 253, 2694 – 2704.en_US
dc.identifier.citedreferenceShen AL, O'Leary KA & Kasper CB ( 2002 ) Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH‐cytochrome P450 oxidoreductase. J Biol Chem 277, 6536 – 6541.en_US
dc.identifier.citedreferenceDaff S ( 2010 ) NO synthase: structures and mechanisms. Nitric Oxide 23, 1 – 11.en_US
dc.identifier.citedreferenceFeng C ( 2012 ) Mechanism of nitric oxide synthase regulation: electron transfer and interdomain interactions. Coord Chem Rev 256, 393 – 411.en_US
dc.identifier.citedreferenceStuehr DJ, Tejero J & Haque MM ( 2009 ) Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain. FEBS J 276, 3959 – 3974.en_US
dc.identifier.citedreferenceLeclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, Heng HH, Rommens JM, Scherer SW, Rosenblatt DS et al. ( 1998 ) Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proc Natl Acad Sci USA 95, 3059 – 3064.en_US
dc.identifier.citedreferenceOlteanu H & Banerjee R ( 2001 ) Human methionine synthase reductase, a soluble P‐450 reductase‐like dual flavoprotein, is sufficient for NADPH‐dependent methionine synthase activation. J Biol Chem 276, 35558 – 35563.en_US
dc.identifier.citedreferenceWolthers KR & Scrutton NS ( 2007 ) Protein interactions in the human methionine synthase‐methionine synthase reductase complex and implications for the mechanism of enzyme reactivation. Biochemistry 46, 6696 – 6709.en_US
dc.identifier.citedreferencePaine MJ, Garner AP, Powell D, Sibbald J, Sales M, Pratt N, Smith T, Tew DG & Wolf CR ( 2000 ) Cloning and characterization of a novel human dual flavin reductase. J Biol Chem 275, 1471 – 1478.en_US
dc.identifier.citedreferenceOstrowski J, Barber MJ, Rueger DC, Miller BE, Siegel LM & Kredich NM ( 1989 ) Characterization of the flavoprotein moieties of NADPH‐sulfite reductase from Salmonella typhimurium and Escherichia coli. Physicochemical and catalytic properties, amino acid sequence deduced from DNA sequence of cysJ, and comparison with NADPH‐cytochrome P‐450 reductase. J Biol Chem 264, 15796 – 15808.en_US
dc.identifier.citedreferenceMunro AW, Leys DG, McLean KJ, Marshall KR, Ost TW, Daff S, Miles CS, Chapman SK, Lysek DA, Moser CC et al. ( 2002 ) P450 BM3: the very model of a modern flavocytochrome. Trends Biochem Sci 27, 250 – 257.en_US
dc.identifier.citedreferenceMunro AW, Girvan HM & McLean KJ ( 2007 ) Cytochrome P450–redox partner fusion enzymes. Biochim Biophys Acta 1770, 345 – 359.en_US
dc.identifier.citedreferenceWang M, Roberts DL, Paschke R, Shea TM, Masters BS & Kim JJ ( 1997 ) Three‐dimensional structure of NADPH‐cytochrome P450 reductase: prototype for FMN‐ and FAD‐containing enzymes. Proc Natl Acad Sci USA 94, 8411 – 8416.en_US
dc.identifier.citedreferenceXia C, Panda SP, Marohnic CC, Martasek P, Masters BS & Kim JJ ( 2011 ) Structural basis for human NADPH‐cytochrome P450 oxidoreductase deficiency. Proc Natl Acad Sci USA 108, 13486 – 13491.en_US
dc.identifier.citedreferenceGarcin ED, Bruns CM, Lloyd SJ, Hosfield DJ, Tiso M, Gachhui R, Stuehr DJ, Tainer JA & Getzoff ED ( 2004 ) Structural basis for isozyme‐specific regulation of electron transfer in nitric‐oxide synthase. J Biol Chem 279, 37918 – 37927.en_US
dc.identifier.citedreferenceXia C, Hamdane D, Shen AL, Choi V, Kasper CB, Pearl NM, Zhang H, Im SC, Waskell L & Kim JJ ( 2011 ) Conformational changes of NADPH‐cytochrome P450 oxidoreductase are essential for catalysis and cofactor binding. J Biol Chem 286, 16246 – 16260.en_US
dc.identifier.citedreferenceHamdane D, Xia C, Im SC, Zhang H, Kim JJ & Waskell L ( 2009 ) Structure and function of an NADPH‐cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450. J Biol Chem 284, 11374 – 11384.en_US
dc.identifier.citedreferenceLaursen T, Jensen K & Moller BL ( 2011 ) Conformational changes of the NADPH‐dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450. Biochim Biophys Acta 1814, 132 – 138.en_US
dc.identifier.citedreferenceMeints CE, Gustafsson FS, Scrutton NS & Wolthers KR ( 2011 ) Tryptophan 697 modulates hydride and interflavin electron transfer in human methionine synthase reductase. Biochemistry 50, 11131 – 11142.en_US
dc.identifier.citedreferencePudney CR, Heyes DJ, Khara B, Hay S, Rigby SE & Scrutton NS ( 2012 ) Kinetic and spectroscopic probes of motions and catalysis in the cytochrome P450 reductase family of enzymes. FEBS J 279, 1534 – 1544.en_US
dc.identifier.citedreferenceWolthers KR & Scrutton NS ( 2004 ) Electron transfer in human methionine synthase reductase studied by stopped‐flow spectrophotometry. Biochemistry 43, 490 – 500.en_US
dc.identifier.citedreferenceAigrain L, Pompon D, Morera S & Truan G ( 2009 ) Structure of the open conformation of a functional chimeric NADPH cytochrome P450 reductase. EMBO Rep 10, 742 – 747.en_US
dc.identifier.citedreferenceGhosh DK, Ray K, Rogers AJ, Nahm NJ & Salerno JC ( 2012 ) FMN fluorescence in inducible NOS constructs reveals a series of conformational states involved in the reductase catalytic cycle. FEBS J 279, 1306 – 1317.en_US
dc.identifier.citedreferenceHaque MM, Kenney C, Tejero J & Stuehr DJ ( 2011 ) A kinetic model linking protein conformational motions, interflavin electron transfer and electron flux through a dual‐flavin enzyme‐simulating the reductase activity of the endothelial and neuronal nitric oxide synthase flavoprotein domains. FEBS J 278, 4055 – 4069.en_US
dc.identifier.citedreferenceHaque MM, Bayachou M, Fadlalla MA, Durra D & Stuehr DJ ( 2013 ) Charge Pairing Interactions Control the Conformational Setpoint and Motions of the FMN Domain in Neuronal Nitric Oxide Synthase. Biochem J 450, 607 – 617.en_US
dc.identifier.citedreferenceIlagan RP, Tiso M, Konas DW, Hemann C, Durra D, Hille R & Stuehr DJ ( 2008 ) Differences in a conformational equilibrium distinguish catalysis by the endothelial and neuronal nitric‐oxide synthase flavoproteins. J Biol Chem 283, 19603 – 19615.en_US
dc.identifier.citedreferenceIlagan RP, Tejero J, Aulak KS, Ray SS, Hemann C, Wang ZQ, Gangoda M, Zweier JL & Stuehr DJ ( 2009 ) Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase. Biochemistry 48, 3864 – 3876.en_US
dc.identifier.citedreferenceKonas DW, Zhu K, Sharma M, Aulak KS, Brudvig GW & Stuehr DJ ( 2004 ) The FAD‐shielding residue Phe1395 regulates neuronal nitric‐oxide synthase catalysis by controlling NADP+ affinity and a conformational equilibrium within the flavoprotein domain. J Biol Chem 279, 35412 – 35425.en_US
dc.identifier.citedreferenceTiso M, Tejero J, Panda K, Aulak KS & Stuehr DJ ( 2007 ) Versatile regulation of neuronal nitric oxide synthase by specific regions of its C‐terminal tail. Biochemistry 46, 14418 – 14428.en_US
dc.identifier.citedreferenceCraig DH, Chapman SK & Daff S ( 2002 ) Calmodulin activates electron transfer through neuronal nitric‐oxide synthase reductase domain by releasing an NADPH‐dependent conformational lock. J Biol Chem 277, 33987 – 33994.en_US
dc.identifier.citedreferenceGutierrez A, Paine M, Wolf CR, Scrutton NS & Roberts GC ( 2002 ) Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding. Biochemistry 41, 4626 – 4637.en_US
dc.identifier.citedreferenceGrunau A, Paine MJ, Ladbury JE & Gutierrez A ( 2006 ) Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase. Biochemistry 45, 1421 – 1434.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.