Show simple item record

MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions

dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorDiBraccio, Gina A.en_US
dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorImber, Suzanne M.en_US
dc.contributor.authorPoh, Gang Kaien_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorJia, Xianzheen_US
dc.contributor.authorBaker, Daniel N.en_US
dc.contributor.authorGlassmeier, Karl‐heinzen_US
dc.contributor.authorLivi, Stefano A.en_US
dc.contributor.authorBoardsen, Scott A.en_US
dc.contributor.authorCassidy, Timothy A.en_US
dc.contributor.authorSarantos, Menelaosen_US
dc.contributor.authorSundberg, Torbjornen_US
dc.contributor.authorMasters, Adamen_US
dc.contributor.authorJohnson, Catherine L.en_US
dc.contributor.authorWinslow, Reka M.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorMcNutt, Ralph L.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2014-12-09T16:54:09Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-12-09T16:54:09Z
dc.date.issued2014-10en_US
dc.identifier.citationSlavin, James A.; DiBraccio, Gina A.; Gershman, Daniel J.; Imber, Suzanne M.; Poh, Gang Kai; Raines, Jim M.; Zurbuchen, Thomas H.; Jia, Xianzhe; Baker, Daniel N.; Glassmeier, Karl‐heinz ; Livi, Stefano A.; Boardsen, Scott A.; Cassidy, Timothy A.; Sarantos, Menelaos; Sundberg, Torbjorn; Masters, Adam; Johnson, Catherine L.; Winslow, Reka M.; Anderson, Brian J.; Korth, Haje; McNutt, Ralph L.; Solomon, Sean C. (2014). "MESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditions." Journal of Geophysical Research: Space Physics 119(10): 8087-8116.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109655
dc.description.abstractThe structure of Mercury's dayside magnetosphere is investigated during three extreme solar wind dynamic pressure events. Two were the result of coronal mass ejections (CMEs), and one was from a high‐speed stream (HSS). The inferred pressures for these events are ~ 45 to 65 nPa. The CME events produced thick, low‐ β (where β is the ratio of plasma thermal to magnetic pressure) plasma depletion layers and high reconnection rates of 0.1–0.2, despite small magnetic shear angles across the magnetopause of only 27 to 60°. For one of the CME events, brief, ~ 1–2 s long diamagnetic decreases, which we term cusp plasma filaments, were observed within and adjacent to the cusp. These filaments may map magnetically to flux transfer events at the magnetopause. The HSS event produced a high‐ β magnetosheath with no plasma depletion layer and large magnetic shear angles of 148 to 166°, but low reconnection rates of 0.03 to 0.1. These results confirm that magnetic reconnection at Mercury is very intense, and its rate is primarily controlled by plasma β in the adjacent magnetosheath. The distance to the subsolar magnetopause is reduced during these events from its mean of 1.45 Mercury radii ( R M ) from the planetary magnetic dipole to between 1.03 and 1.12 R M . The shielding provided by induction currents in Mercury's interior, which temporarily increase Mercury's magnetic moment, was negated by reconnection‐driven magnetic flux erosion. Key Points Thick PDLs form during CMEs Deep cusps during CMEs Reconnection negates induction currentsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAGUen_US
dc.subject.otherReconnectionen_US
dc.subject.otherCuspen_US
dc.subject.otherPlasma Depletion Layeren_US
dc.subject.otherCore Inductionen_US
dc.subject.otherMercuryen_US
dc.subject.otherMagnetosphereen_US
dc.titleMESSENGER observations of Mercury's dayside magnetosphere under extreme solar wind conditionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109655/1/jgra51286.pdf
dc.identifier.doi10.1002/2014JA020319en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSergeev, V., R. J. Pellenin, and T. I. Pulkkinen ( 1996 ), Steady magnetospheric convection: A review of recent results, Space Sci. Rev., 75, 551 – 604.en_US
dc.identifier.citedreferenceRussell, C. T., and R. C. Elphic ( 1978 ), Initial ISEE magnetometer results: Magnetopause observations, Space Sci. Res., 22, 681 – 715.en_US
dc.identifier.citedreferenceRussell, C. T., and R. J. Walker ( 1985 ), Flux transfer events at Mercury, J. Geophys. Res., 90, 11,067 – 11,074, doi: 10.1029/JA090iA11p11067.en_US
dc.identifier.citedreferenceSarantos, M., and J. A. Slavin ( 2009 ), On the possible formation of Alfven wings at Mercury during encounters with coronal mass ejections, Geophys. Res. Lett., 36, L04107, doi: 10.1029/2008GL036747.en_US
dc.identifier.citedreferenceSarantos, M., R. M. Killen, and D. Kim ( 2007 ), Predicting the long‐term solar wind ion‐sputtering source at Mercury, Planet. Space Sci., 55, 1584 – 1595, doi: 10.1016/j.pss.2006.10.011.en_US
dc.identifier.citedreferenceSchmidt, C. A., J. Baumgardner, M. Mendillo, and J. K. Wilson ( 2012 ), Escape rates and variability constraints for high‐energy sodium sources at Mercury, J. Geophys. Res., 117, A03301, doi: 10.1029/2011JA017217.en_US
dc.identifier.citedreferenceScurry, L., C. T. Russell, and J. T. Gosling ( 1994 ), Geomagnetic activity and the beta dependence of the dayside reconnection rate, J. Geophys. Res., 99, 14,811 – 14,814, doi: 10.1029/94JA00794.en_US
dc.identifier.citedreferenceShue, J.‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 – 9511, doi: 10.1029/97JA00196.en_US
dc.identifier.citedreferenceSibeck, D. G., R. E. Lopez, and E. C. Roelof ( 1991 ), Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489 – 5495, doi: 10.1029/90JA02464.en_US
dc.identifier.citedreferenceSiscoe, G., and L. Christopher ( 1975 ), Variations in the solar wind stand‐off distance at Mercury, Geophys. Res. Lett., 2, 158 – 160, doi: 10.1029/GL002i004p00158.en_US
dc.identifier.citedreferenceSiscoe, G. L., N. F. Ness, and C. M. Yeates ( 1975 ), Substorms on Mercury?, J. Geophys. Res., 80, 4359 – 4363, doi: 10.1029/JA080i031p04359.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind stand‐off distance at Mercury, J. Geophys. Res., 84, 2076 – 2082, doi: 10.1029/JA084iA05p02076.en_US
dc.identifier.citedreferenceSlavin, J. A., R. E. Holzer, J. R. Spreiter, and S. S. Stahara ( 1984 ), Planetary Mach cones: Theory and observation, J. Geophys. Res., 89, 2708 – 2714, doi: 10.1029/JA089iA05p02708.en_US
dc.identifier.citedreferenceSlavin, J. A., R. P. Lepping, J. Gjerloev, D. H. Fairfield, M. Hesse, C. J. Owen, M. B. Moldwin, T. Nagai, A. Ieda, and T. Mukai ( 2003 ), Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108 ( A1 ), 1015, doi: 10.1029/2002JA009557.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2008 ), Mercury's magnetosphere after MESSENGER's first flyby, Science, 321, 85 – 89.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010a ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010b ), MESSENGER observations of large flux transfer events at Mercury, Geophys. Res. Lett., 37, L02105, doi: 10.1029/2009GL041485.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012a ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012b ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.en_US
dc.identifier.citedreferenceSmith, D. E., et al. ( 2012 ), Gravity field and internal structure of Mercury from MESSENGER, Science, 336, 214 – 217.en_US
dc.identifier.citedreferenceSmith, M. F., and M. Lockwood ( 1990 ), The statistical cusp: A flux transfer event model, Geophys. Res. Lett., 17, 1069 – 1072, doi: 10.1029/GL017i008p01069.en_US
dc.identifier.citedreferenceSolomon, S. C., et al. ( 2001 ), The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445 – 1465, doi: 10.1016/S0032‐0633(01)00085‐X.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö. ( 1974 ), Magnetopause reconnection rate, J. Geophys. Res., 79, 1546 – 1549, doi: 10.1029/JA079i010p01546.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö., and L. J. Cahill Jr. ( 1967 ), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171 – 183, doi: 10.1029/JZ072i001p00171.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö., G. Paschmann, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, and C. T. Russell ( 1981 ), Evidence for magnetic field reconnection at the Earth's magnetopause, J. Geophys. Res., 86, 10,049 – 10,067, doi: 10.1029/JA086iA12p10049.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253.en_US
dc.identifier.citedreferenceSuess, S. T., and B. E. Goldstein ( 1979 ), Compression of the Hermean magnetosphere by the solar wind, J. Geophys. Res., 84, 3306 – 3312, doi: 10.1029/JA084iA07p03306.en_US
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.en_US
dc.identifier.citedreferenceTanskanen, E. I. ( 2009 ), A comprehensive high‐throughput analysis of substorms observed by IMAGE magnetometer network: Years 1993–2003 examined, J. Geophys. Res., 114, A05204, doi: 10.1029/2008JA013682.en_US
dc.identifier.citedreferenceTanskanen, E., J. A. Slavin, D. H. Fairfield, D. G. Sibeck, J. Gjerloev, T. Mukai, A. Ieda, and T. Nagai ( 2005 ), Response of the magnetotail to prolonged southward B z intervals: Loading, unloading, and continuous dissipation, J. Geophys. Res., 110, A03216, doi: 10.1029/2004JA010561.en_US
dc.identifier.citedreferenceToth, G., and D. Odstrcil ( 1996 ), Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. Comp. Phys., 128, 82 – 100.en_US
dc.identifier.citedreferenceVervack, R. J., Jr., et al. ( 2010 ), Mercury's complex exosphere: Results from MESSENGER's third flyby, Science, 329, 672 – 675, doi: 10.1126/science.1188572.en_US
dc.identifier.citedreferenceWang, Y. L., et al. ( 2005 ), Initial results of high‐latitude magnetopause and low‐latitude flank flux transfer events from 3 years of Cluster observations, J. Geophys. Res., 110, A11221, doi: 10.1029/2005JA011150.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceWurz, P., J. A. Whitby, U. Rohner, J. A. Martín‐Fernández, H. Lammer, and C. Kolb ( 2010 ), Self‐consistent modelling of Mercury's exosphere by sputtering, micro‐meteorite impact and photon‐stimulated desorption, Planet. Space Sci., 58, 1599 – 1616, doi: 10.1016/j.pss.2010.08.003.en_US
dc.identifier.citedreferenceXie, H., L. Ofman, and G. Lawrence ( 2004 ), Cone model for halo CMEs: Application to space weather forecasting, J. Geophys. Res., 109, A03109, doi: 10.1029/2003JA010226.en_US
dc.identifier.citedreferenceZhang, H., K. K. Khurana, M. G. Kivelson, V. Angelopoulos, Z. Y. Pu, Q.‐G. Zong, J. Liu, and X.‐Z. Zhou ( 2008 ), Modeling a force‐free flux transfer event probed by multiple THEMIS spacecraft, J. Geophys. Res., 113, A00C05, doi: 10.1029/2008JA013451.en_US
dc.identifier.citedreferenceZhou, X.‐W., and C. T. Russell ( 1997 ), The location of the high‐latitude polar cusp and the shape of the surrounding magnetopause, J. Geophys. Res., 102, 105 – 110, doi: 10.1029/96JA02702.en_US
dc.identifier.citedreferenceZhou, X.‐W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder ( 2000 ), Solar wind control of the polar cusp at high latitude, J. Geophys. Res., 105, 245 – 251, doi: 10.1029/1999JA900412.en_US
dc.identifier.citedreferenceZurbuchen, T. H., J. M. Raines, G. Gloeckler, S. M. Krimigis, J. A. Slavin, P. L. Koehn, R. M. Killen, A. L. Sprague, R. L. McNutt Jr., and S. C. Solomon ( 2008 ), MESSENGER observations of the composition of Mercury's ionized exosphere and plasma environment, Science, 321, 90 – 92, doi: 10.1126/science.1159314.en_US
dc.identifier.citedreferenceZwan, B. J., and R. A. Wolf ( 1976 ), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636 – 1648, doi: 10.1029/JA081i010p01636.en_US
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos ( 2008 ), Paraboloid model of Mercury, J. Geophys. Res., 113, A12210, doi: 10.1029/2008JA013368.en_US
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 – 39, doi: 10.1016/j.icarus.2010.01.024.en_US
dc.identifier.citedreferenceAnderson, B. J., T.‐D. Phan, and S. A. Fuselier ( 1997 ), Relationships between plasma depletion and subsolar reconnection, J. Geophys. Res., 102, 9531 – 9542, doi: 10.1029/97JA00173.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt Jr. ( 2008 ), The structure of Mercury's magnetic field from MESSENGER's first flyby, Science, 321, 82 – 85.en_US
dc.identifier.citedreferenceAnderson, B. J., et al. ( 2010 ), The magnetic field of Mercury, Space Sci. Rev., 152, 307 – 339, doi: 10.1007/s11214‐009‐9544‐3.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011a ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.en_US
dc.identifier.citedreferenceAnderson, B. J., J. A. Slavin, H. Korth, S. A. Boardsen, T. H. Zurbuchen, J. M. Raines, G. Gloeckler, R. L. McNutt Jr., and S. C. Solomon ( 2011b ), The dayside magnetospheric boundary layer at Mercury, Planet. Space Sci., 59, 2037 – 2050.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. ( 2012 ), Low‐degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.en_US
dc.identifier.citedreferenceArge, C. N., J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li ( 2004 ), Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Solar Terr. Phys., 66, 1295 – 1309.en_US
dc.identifier.citedreferenceAubry, M. P., M. G. Kivelson, and C. T. Russell ( 1971 ), Motion and structure of the magnetopause, J. Geophys. Res., 76, 1673 – 1696, doi: 10.1029/JA076i007p01673.en_US
dc.identifier.citedreferenceBaker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron ( 1996 ), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101, 12,975 – 13,010, doi: 10.1029/95JA03753.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2009 ), Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions, J. Geophys. Res., 114, A10101, doi: 10.1029/2009JA014287.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury: WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.en_US
dc.identifier.citedreferenceBenna, M., et al. ( 2010 ), Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, Icarus, 209, 3 – 10, doi: 10.1016/j.icarus.2009.11.036.en_US
dc.identifier.citedreferenceBerchem, J., and C. T. Russell ( 1982 ), The thickness of the magnetopause current layer: ISEE 1 and 2 observations, J. Geophys. Res., 87, 2108 – 2114, doi: 10.1029/JA087iA04p02108.en_US
dc.identifier.citedreferenceBurch, J. L. ( 1973 ), Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field, Radio Sci., 8, 955 – 961, doi: 10.1029/RS008i011p00955.en_US
dc.identifier.citedreferenceBurger, M. H., et al. ( 2010 ), Monte Carlo modeling of sodium in Mercury's exosphere during the first two MESSENGER flybys, Icarus, 209, 63 – 74, doi: 10.1016/j.icarus.2010.05.007.en_US
dc.identifier.citedreferenceBurger, M. H., R. M. Killen, W. E. McClintock, A. W. Merkel, R. J. Vervack Jr., T. A. Cassidy, and M. Sarantos ( 2014 ), Seasonal variations in Mercury's dayside calcium exosphere, Icarus, 238, 51 – 58.en_US
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), The terrestrial magnetosphere: A half‐wave rectifier of the interplanetary electric field, Science, 189, 717 – 718.en_US
dc.identifier.citedreferenceCaan, M. N., R. L. McPherron, and C. T. Russell ( 1977 ), Characteristics of the association between the interplanetary magnetic field and substorms, J. Geophys. Res., 82, 4837 – 4842, doi: 10.1029/JA082i029p04837.en_US
dc.identifier.citedreferenceCassidy, T. A., A. W. Merkel, M. H. Burger, W. E. McClintock, R. M. Killen, M. Sarantos, A. L. Sprague, R. J. Vervack Jr., and S. C. Solomon ( 2012 ), Mercury's seasonal sodium exosphere, EPSC Abstracts, 7, abstract EPSC2012‐766.en_US
dc.identifier.citedreferenceCooling, B. M. A., C. J. Owen, and S. J. Schwartz ( 2001 ), Role of the magnetosheath flow in determining the motion of open flux tubes, J. Geophys. Res., 106, 18,763 – 18,776, doi: 10.1029/2000JA000455.en_US
dc.identifier.citedreferenceCowley, S. W. H., and C. J. Owen ( 1989 ), A simple illustrative model of open flux tube motion over the dayside magnetopause, Planet. Space Sci., 37, 1461 – 1475.en_US
dc.identifier.citedreferenceCrooker, N. U. ( 1979 ), Dayside merging and cusp geometry, J. Geophys. Res., 84, 951 – 959, doi: 10.1029/JA084iA03p00951.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/ PhysRevLett.6.47.en_US
dc.identifier.citedreferenceEastwood, J. P., T. D. Phan, M. Oieroset, M. A. Shay, K. Malakit, M. Swisdak, J. F. Drake, and A. Masters ( 2013 ), Influence of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space plasmas, Plasma Phys. Control. Fusion, 55, 124001, doi: 10.1088/0741‐3335/55/12/124001.en_US
dc.identifier.citedreferenceFarrugia, C. J., N. V. Erkaev, H. K. Biernat, and L. F. Burlaga ( 1995 ), Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud, J. Geophys. Res., 10, 19,245 – 19,257, doi: 10.1029/95JA0108.en_US
dc.identifier.citedreferenceFuselier, S. A., and W. S. Lewis ( 2011 ), Properties of near‐Earth magnetic reconnection from in‐situ observations, Space Sci. Rev., 160, 95 – 121, doi: 10.1007/s11214‐011‐9820‐x.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014 ), Ion kinetic properties in Mercury's pre‐midnight plasma sheet, Geophys. Res. Lett., 41, doi: 10.1002/2014GL060468.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H. ( 2000 ), Currents in Mercury's magnetosphere, in Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, edited by S. Ohtani et al., pp. 371 – 380, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach ( 2007 ), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci. Rev., 132, 511 – 527, doi: 10.1007/s11214‐007‐9244‐9.en_US
dc.identifier.citedreferenceGosling, J. T., et al. ( 2005 ), Direct evidence for magnetic reconnection in the solar wind near 1 AU, J. Geophys. Res., 110, A01107, doi: 10.1029/2004JA010809.en_US
dc.identifier.citedreferenceGrosser, J., K.‐H. Glassmeier, and A. Stadelmann ( 2004 ), Induced magnetic field effects at planet Mercury, Planet. Space Sci., 52, 1251 – 1260.en_US
dc.identifier.citedreferenceHasegawa, H., B. U. Ö. Sonnerup, C. J. Owen, B. Klecker, G. Paschmann, A. Balogh, and H. Rème ( 2006 ), The structure of flux transfer events recovered from Cluster data, Ann. Geophys., 24, 603 – 618, doi: 10.5194/angeo‐24‐603‐2006.en_US
dc.identifier.citedreferenceHasegawa, H., et al. ( 2010 ), Evidence for a flux transfer event generated by multiple X‐line reconnection at the magnetopause, Geophys. Res. Lett., 37, L16101, doi: 10.1029/2010GL044219.en_US
dc.identifier.citedreferenceHill, T. W., A. J. Dessler, and R. A. Wolf ( 1976 ), Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles, Geophys. Res. Lett., 3, 429 – 432, doi: 10.1029/GL003i008p00429.en_US
dc.identifier.citedreferenceHolzer, R. E., and J. A. Slavin ( 1978 ), Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere, J. Geophys. Res., 83, 3831 – 3839, doi: 10.1029/JA083iA08p03831.en_US
dc.identifier.citedreferenceHood, L. L., and G. Schubert ( 1979 ), Inhibition of solar wind impingement on Mercury by planetary induction currents, J. Geophys. Res., 84, 2641 – 2647, doi: 10.1029/JA084iA06p02641.en_US
dc.identifier.citedreferenceHuang, C.‐S., A. D. DeJong, and X. Cai ( 2009 ), Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events, J. Geophys. Res., 114, A07202, doi: 10.1029/2009JA014232.en_US
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, R. L. McNutt Jr., and S. C. Solomon ( 2014 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613 – 5623, doi: 10.1002/2014JA019884.en_US
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.en_US
dc.identifier.citedreferenceKillen, R. M., et al. ( 2001 ), Evidence for space weather at Mercury, J. Geophys. Res., 106, 20,509 – 20,525, doi: 10.1029/2000JE001401.en_US
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.en_US
dc.identifier.citedreferenceLeblanc, F., et al. ( 2009 ), Short‐term variations of Mercury's Na exosphere observed with very high spectral resolution, Geophys. Res. Lett., 36, L07201, doi: 10.1029/2009GL038089.en_US
dc.identifier.citedreferenceLee, L. C., and Z. F. Fu ( 1985 ), A theory of magnetic flux transfer at the Earth's magnetopause, Geophys. Res. Lett., 12, 105 – 108.en_US
dc.identifier.citedreferenceMasters, A., J. A. Slavin, G. A. DiBraccio, T. Sundberg, R. M. Winslow, C. L. Johnson, B. J. Anderson, and H. Korth ( 2013 ), A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn, J. Geophys. Res. Space Physics, 118, 4381 – 4390, doi: 10.1002/jgra.50428.en_US
dc.identifier.citedreferenceMcClintock, W. E., et al. ( 2008 ), Spectroscopic observations of Mercury's surface reflectance during MESSENGER's first Mercury flyby, Science, 321, 62–65, doi: 10.1126/science.1159933.en_US
dc.identifier.citedreferenceMcPherron, R. L., C. T. Russell, and M. P. Aubry ( 1973 ), Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 78, 3131 – 3149, doi: 10.1029/JA078i016p03131.en_US
dc.identifier.citedreferenceMenietti, J. D., and J. L. Burch ( 1985 ), Spatial extent of the plasma injection region in the cusp–magnetosheath interface, J. Geophys. Res., 93, 5345 – 5351, doi: 10.1029/JA093iA01p00105.en_US
dc.identifier.citedreferenceMilan, S. E., S. W. H. Cowley, M. Lester, D. M. Wright, J. A. Slavin, M. Fillingim, C. W. Carlson, and H. J. Singer ( 2004 ), Response of the magnetotail to changes in the open flux content of the magnetosphere, J. Geophys. Res., 109, A04220, doi: 10.1029/2003JA010350.en_US
dc.identifier.citedreferenceMozer, F. S., and A. Hull ( 2010 ), Scaling the energy conversion rate from magnetic field reconnection to different bodies, Phys. Plasmas, 17, 102906, doi: 10.1063/1.3504224.en_US
dc.identifier.citedreferenceMozer, F. S., and A. Retinò ( 2007 ), Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements, J. Geophys. Res., 112, A10206, doi: 10.1029/2007JA012406.en_US
dc.identifier.citedreferenceMüller, J., S. Simon, Y.‐C. Wang, U. Motschmann, D. Heyner, J. Schüle, W.‐H. Ip, G. Kleindienst, and G. J. Pringle ( 2012 ), Origin of Mercury's double magnetopause: 3D hybrid simulation study with A.I.K.E.F., Icarus, 218, 666 – 687, doi: 10.1016/j.icarus.2011.12.028.en_US
dc.identifier.citedreferenceMura, A., P. Wurz, H. I. M. Lichtenegger, H. Schleicher, H. Lammer, D. Delcourt, A. Milillo, S. Massetti, M. L. Khodachenko, and S. Orsini ( 2009 ), The sodium exosphere of Mercury: Comparison between observations during Mercury's transit and model results, Icarus, 200, 1 – 11, doi: 10.1016/j.icarus.2008.11.014.en_US
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, Y. C. Wang, and K. H. Schatten ( 1974 ), Observations of magnetic field near Mercury: Preliminary results from Mariner 10, Science, 185, 151 – 159.en_US
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang ( 1976 ), Observations of Mercury's magnetic field, Icarus, 28, 479 – 488.en_US
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1987 ), Cusp width and B z: Observations and a conceptual model, J. Geophys. Res., 92, 13,673 – 13,678, doi: 10.1029/JA092iA12p13673.en_US
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.en_US
dc.identifier.citedreferenceOdstrcil, D., P. Riley, and X. P. Zhao ( 2004 ), Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res., 109, A02116, doi: 10.1029/2003JA010135.en_US
dc.identifier.citedreferenceOwen, C. J., A. Marchaudon, M. W. Dunlop, A. N. Fazakerley, J.‐M. Bosqued, J. P. Dewhurst, R. C. Fear, S. A. Fuselier, A. Balogh, and H. Rèmy ( 2008 ), Cluster observations of “crater” flux transfer events in the dayside high‐latitude magnetopause, J. Geophys. Res., 113, A07S04, doi: 10.1029/2007JA012701.en_US
dc.identifier.citedreferencePaschmann G., M. Oieroset, and T. Phan ( 2013 ), In‐situ observations of reconnection in space, Space Sci. Rev., 178, 385 – 417, doi: 10.1007/s11214-012-9957-2.en_US
dc.identifier.citedreferencePhan, T. D., et al. ( 2005 ), A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind, Nature, 439, 175 – 178, doi: 10.1038/nature04393.en_US
dc.identifier.citedreferencePhan, T. D., G. Paschmann, J. T. Gosling, M. Oieroset, M. Fujimoto, J. P. Drake, and V. Angelopoulos ( 2013 ), The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from magnetopause observations, Geophys. Res. Lett., 40, 11 – 16, doi: 10.1029/2012GL054528.en_US
dc.identifier.citedreferencePotter, A. E. ( 1995 ), Chemical sputtering could produce sodium vapor and ice on Mercury, Geophys. Res. Lett., 22, 3289 – 3292, doi: 10.1029/95GL03181.en_US
dc.identifier.citedreferencePotter, A. E., and T. H. Morgan ( 1990 ), Evidence for magnetospheric effects on the sodium atmosphere of Mercury, Science, 248, 835 – 838, doi: 10.1126/science.248.4957.835.en_US
dc.identifier.citedreferenceRaeder, J. ( 2006 ), Flux transfer events: 1. Generation mechanism for strong southward IMF, Ann. Geophys., 24, 381 – 392, doi: 10.5194/angeo‐24‐381‐2006.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012JA018073.en_US
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, G. Gloeckler, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, doi: 10.1002/2014JA020120.en_US
dc.identifier.citedreferenceReiff, P. H., and J. G. Luhmann ( 1986 ), Solar wind control of the polar‐cap potential, in Solar Wind‐Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, pp. 453 – 476, Terra Scientific, Tokyo, Japan.en_US
dc.identifier.citedreferenceReiff, P. H., T. W. Hill, and J. L. Burch ( 1977 ), Solar wind plasma injection at the dayside magnetospheric cusp, J. Geophys. Res., 82, 479 – 491, doi: 10.1029/JA082i004p00479.en_US
dc.identifier.citedreferenceRichardson, J. D. ( 2002 ), The magnetosheaths of the outer planets, Planet. Space Sci., 50, 503 – 517.en_US
dc.identifier.citedreferenceRijnbeek, R. P., S. W. H. Cowley, D. J. Southwood, and C. T. Russell ( 1984 ), A survey of dayside flux transfer events observed by ISEE‐1 and ISEE‐2 magnetometers, J. Geophys. Res., 89, 786 – 800, doi: 10.1029/JA089iA02p00786.en_US
dc.identifier.citedreferenceRussell, C. T. ( 1977 ), On the relative locations of the bow shocks of the terrestrial planets, Geophys. Res. Lett., 4, 387 – 390, doi: 10.1029/GL004i010p00387.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.