Show simple item record

On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow

dc.contributor.authorZou, Shashaen_US
dc.contributor.authorMoldwin, Mark B.en_US
dc.contributor.authorRidley, Aaron J.en_US
dc.contributor.authorNicolls, Michael J.en_US
dc.contributor.authorCoster, Anthea J.en_US
dc.contributor.authorThomas, Evan G.en_US
dc.contributor.authorRuohoniemi, J. Michaelen_US
dc.date.accessioned2014-12-09T16:54:22Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-12-09T16:54:22Z
dc.date.issued2014-10en_US
dc.identifier.citationZou, Shasha; Moldwin, Mark B.; Ridley, Aaron J.; Nicolls, Michael J.; Coster, Anthea J.; Thomas, Evan G.; Ruohoniemi, J. Michael (2014). "On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow." Journal of Geophysical Research: Space Physics 119(10): 8543-8559.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109661
dc.description.abstractStorm‐enhanced density (SED) plumes are prominent ionospheric electron density increases at the dayside middle and high latitudes. The generation and decay mechanisms of the plumes are still not clear. We present observations of SED plumes during six storms between 2010 and 2013 and comprehensively analyze the associated ionospheric parameters within the plumes, including vertical ion flow, field‐aligned ion flow and flux, plasma temperature, and field‐aligned currents, obtained from multiple instruments, including GPS total electron content (TEC), Poker Flat Incoherent Scatter Radar (PFISR), Super Dual Auroral Radar Network, and Active Magnetosphere and Planetary Electrodynamics Response Experiment. The TEC increase within the SED plumes at the PFISR site can be 1.4–5.5 times their quiet time value. The plumes are usually associated with northwestward E  ×  B flows ranging from a couple of hundred m s −1 to > 1 km s −1 . Upward vertical flows due to the projection of these E  ×  B drifts are mainly responsible for lifting the plasma in sunlit regions to higher altitude and thus leading to plume density enhancement. The upward vertical flows near the poleward part of the plumes are more persistent, while those near the equatorward part are more patchy. In addition, the plumes can be collocated with either upward or downward field‐aligned currents (FACs) but are usually observed equatorward of the peak of the Region 1 upward FAC, suggesting that the northwestward flows collocated with plumes can be either subauroral or auroral flows. Furthermore, during the decay phase of the plume, large downward ion flows, as large as ~200 m s −1 , and downward fluxes, as large as 10 14  m −2  s −1 , are often observed within the plumes. In our study of six storms, enhanced ambipolar diffusion due to an elevated pressure gradient is able to explain two of the four large downward flow/flux cases, but this mechanism is not sufficient for the other two cases where the flows are of larger magnitude. For the latter two cases, enhanced poleward thermospheric wind is suggested to be another mechanism for pushing the plasma downward along the field line. These downward flows should be an important mechanism for the decay of the SED plumes. Key Points Vertical plasma lifting leads to density increase during plume generation phase Large downward field‐aligned ion flow/flux seen during plume decay phase Complex‐induced plasma drifts seen indicating plumes' highly dynamic natureen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringeren_US
dc.subject.otherSED Plumeen_US
dc.subject.otherGeomagnetic Stormen_US
dc.subject.otherStorm‐Enhanced Density (SED)en_US
dc.subject.otherSAPSen_US
dc.subject.otherIonospheric Convectionen_US
dc.subject.otherField‐Aligned Currents (FACs)en_US
dc.titleOn the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flowen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/1/StormB_tec_20121113.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/2/QuietTimeF_tec_20100821.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/3/StormD_tec_20120423.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/4/QuietTimeC_tec_20120928.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/5/SupplementaryMaterial_Figure3_quiet.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/6/QuietTimeE_tec_20110203.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/7/StormC_tec_20120930.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/8/StormA_tec_20130423.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/9/StormF_tec_20100803.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/10/jgra51348.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/11/SupplementaryMaterial_Figure4_quiet.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/12/QuietTimeA_tec_20130421.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/13/QuietTimeD_tec_20120429.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/14/QuietTimeB_tec_20121109.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109661/15/StormE_tec_20110204.pdf
dc.identifier.doi10.1002/2014JA020408en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRuohoniemi, J. M., and K. B. Baker ( 1998 ), Large‐scale imaging of high‐latitude convection with Super Dual Auroral Radar Network HF radar observations, J. Geophys. Res., 103 ( A9 ), 20,797 – 20,811, doi: 10.1029/98JA01288.en_US
dc.identifier.citedreferenceOgawa, Y., S. C. Buchert, R. Fujii, S. Nozawa, and A. P. van Eyken ( 2009 ), Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar, J. Geophys. Res., 114, A05305, doi: 10.1029/2008JA013817.en_US
dc.identifier.citedreferencePicone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin ( 2002 ), NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107 ( A12 ), 1468, doi: 10.1029/2002JA009430.en_US
dc.identifier.citedreferencePintér, B., S. D. Thom, R. Balthazor, H. Vo, and G. J. Bailey ( 2006 ), Modeling subauroral polarization streams equatorward of the plasmapause footprints, J. Geophys. Res., 111, A10306, doi: 10.1029/2005JA011457.en_US
dc.identifier.citedreferenceRichards, P. G., M. J. Nicolls, C. J. Heinselman, J. J. Sojka, J. M. Holt, and R. R. Meier ( 2009 ), Measured and modeled ionospheric densities, temperatures, and winds during the international polar year, J. Geophys. Res., 114, A12317, doi: 10.1029/2009JA014625.en_US
dc.identifier.citedreferenceRichmond, A. D., and S. Matsushita ( 1975 ), Thermospheric response to a magnetic substorm, J. Geophys. Res., 80 ( 19 ), 2839 – 2850, doi: 10.1029/JA080i019p02839.en_US
dc.identifier.citedreferenceRichmond, A. D., and J. P. Thayer ( 2000 ), Ionospheric electrodynamics: A tutorial, in Magnetospheric Current Systems, Geophys. Monogr. Ser., vol. 118, edited by S.‐I. Ohtani et al., pp. 131 – 146, AGU, Washington, D. C., doi: 10.1029/GM118p0131.en_US
dc.identifier.citedreferenceRichmond, A. D., C. Lathuillère, and S. Vennerstroem ( 2003 ), Winds in the high‐latitude lower thermosphere: Dependence on the interplanetary magnetic field, J. Geophys. Res., 108 ( A2 ), 1066, doi: 10.1029/2002JA009493.en_US
dc.identifier.citedreferenceRideout, W., and A. Coster ( 2006 ), Automated GPS processing for global total electron content data, GPS Solut., 10 ( 3 ), 219 – 228, doi: 10.1007/s10291-006-0029-5.en_US
dc.identifier.citedreferenceSaito, A., S. Fukao, and S. Miyazaki ( 1998 ), High resolution mapping of TEC perturbations with the GSI GPS network over Japan, Geophys. Res. Lett., 25 ( 16 ), 3079 – 3082, doi: 10.1029/98GL52361.en_US
dc.identifier.citedreferenceSellek, R., G. J. Bailey, R. J. Moffett, R. A. Heelis, and P. C. Anderson ( 1991 ), Effects of large zonal plasma drifts on the subauroral ionosphere, J. Atmos. Terr. Phys., 53, 557 – 565, doi: 10.1016/0021-9169(91)90083-J.en_US
dc.identifier.citedreferenceShepherd, S. G., and J. M. Ruohoniemi ( 2000 ), Electrostatic potential patterns in the high‐latitude ionosphere constrained by SuperDARN measurements, J. Geophys. Res., 105 ( A10 ), 23,005 – 23,014, doi: 10.1029/2000JA000171.en_US
dc.identifier.citedreferenceSkone, S., R. Yousuf, and A. Coster ( 2004 ), Performance evaluation of the wide area augmentation system for ionospheric storm events, Journal of Global Positioning Systems, 3 ( 1–2 ), 251 – 258.en_US
dc.identifier.citedreferenceSojka, J. J., M. J. Nicolls, C. J. Heinselman, and J. D. Kelly ( 2009 ), The PFISR IPY observations of ionospheric climate and weather, J. Atmos. Sol. Terr. Phys., 71, 771 – 785, doi: 10.1016/j.jastp.2009.01.001.en_US
dc.identifier.citedreferenceSouthwood, D. J., and R. A. Wolf ( 1978 ), An assessment of the role of precipitation in magnetospheric convection, J. Geophys. Res., 83 ( A11 ), 5227 – 5232, doi: 10.1029/JA083iA11p05227.en_US
dc.identifier.citedreferenceSpiro, R. W., R. A. Heelis, and W. B. Hanson ( 1979 ), Rapid subauroral ion drifts observed by Atmospheric Explorer C, Geophys. Res. Lett., 6, 657 – 660, doi: 10.1029/GL006i008p00657.en_US
dc.identifier.citedreferenceSun, Y.‐Y., T. Matsuo, E. A. Araujo‐Pradere, and J.‐Y. Liu ( 2013 ), Ground‐based GPS observation of SED‐associated irregularities over CONUS, J. Geophys. Res. Space Physics, 118, 2478 – 2489, doi: 10.1029/2012JA018103.en_US
dc.identifier.citedreferenceThomas, E. G., J. B. H. Baker, J. M. Ruohoniemi, L. B. N. Clausen, A. J. Coster, J. C. Foster, and P. J. Erickson ( 2013 ), Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density, J. Geophys. Res. Space Physics, 118, 1180 – 1189, doi: 10.1002/jgra.50116.en_US
dc.identifier.citedreferenceTsurutani, B. T., et al. ( 2004 ), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi: 10.1029/2003JA010342.en_US
dc.identifier.citedreferenceTsurutani, B. T., A. J. Mannuccci, O. P. Verkhoglyadova, and G. S. Lakhina ( 2013 ), Comment on “Storming the Bastille: The effect of electric fields on the ionospheric F ‐layer” by Rishbeth et al. (2010), Ann. Geophys., 31, 145 – 150, doi: 10.5194/angeo-31-145-2013.en_US
dc.identifier.citedreferenceWalsh, B. M., J. C. Foster, P. J. Erickson, and D. G. Sibeck ( 2014 ), Simultaneous ground‐ and space‐based observations of the plasmaspheric plume and reconnection, Science, 343 ( 6175 ), 1122 – 1125.en_US
dc.identifier.citedreferenceWang, W., A. G. Burns, M. Wiltberger, S. C. Solomon, and T. L. Killeen ( 2008 ), Altitude variations of the horizontal thermospheric winds during geomagnetic storms, J. Geophys. Res., 113, A02301, doi: 10.1029/2007JA012374.en_US
dc.identifier.citedreferenceWang, W., J. Lei, A. G. Burns, S. C. Solomon, M. Wiltberger, J. Xu, Y. Zhang, L. Paxton, and A. Coster ( 2010 ), Ionospheric response to the initial phase of geomagnetic storms: Common features, J. Geophys. Res., 115, A07321, doi: 10.1029/2009JA014461.en_US
dc.identifier.citedreferenceWang, W., E. R. Talaat, A. G. Burns, B. Emery, S. Hsieh, J. Lei, and J. Xu ( 2012 ), Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations, J. Geophys. Res., 117, A07301, doi: 10.1029/2012JA017656.en_US
dc.identifier.citedreferenceWhalen, J. A. ( 1989 ), The daytime F layer trough and its relation to ionospheric‐magnetospheric convection, J. Geophys. Res., 94 ( A12 ), 17,169 – 17,184, doi: 10.1029/JA094iA12p17169.en_US
dc.identifier.citedreferenceYeh, H.‐C., J. C. Foster, F. J. Rich, and W. Swider ( 1991 ), Storm time electric field penetration observed at mid‐latitude, J. Geophys. Res., 96 ( A4 ), 5707 – 5721, doi: 10.1029/90JA02751.en_US
dc.identifier.citedreferenceZou, S., A. J. Ridley, M. B. Moldwin, M. J. Nicolls, A. J. Coster, E. G. Thomas, and J. M. Ruohoniemi ( 2013 ), Multi‐instrument observations of SED during 24–25 October 2011 storm: Implications for SED formation processes, J. Geophys. Res. Space Physics, 118, 7798 – 7809, doi: 10.1002/2013JA018860.en_US
dc.identifier.citedreferenceAnderson, B. J., K. Takahashi, and B. A. Toth ( 2000 ), Sensing global Birkeland currents with Iridium® engineering magnetometer data, Geophys. Res. Lett., 27, 4045 – 4048, doi: 10.1029/2000GL000094.en_US
dc.identifier.citedreferenceAnderson, B. J., K. Takahashi, T. Kamei, C. L. Waters, and B. A. Toth ( 2002 ), Birkeland current system key parameters derived from Iridium® observations: Method and initial validation results, J. Geophys. Res., 107 ( A6 ), 1079, doi: 10.1029/2001JA000080.en_US
dc.identifier.citedreferenceAnderson, P. C., R. A. Heelis, and W. B. Hanson ( 1991 ), The ionospheric signatures of rapid subauroral ion drifts, J. Geophys. Res., 96, 5785 – 5792, doi: 10.1029/90JA02651.en_US
dc.identifier.citedreferenceAponte, N., M. J. Nicolls, S. A. Gonzalez, M. P. Sulzer, M. C. Kelley, E. Robles, and C. A. Tepley ( 2005 ), Instantaneous electric field measurements and derived neutral winds at Arecibo, Geophys. Res. Lett., 32, L12107, doi: 10.1029/2005GL022609.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. Hesse, J. Birn, and M. M. Kuznetsova ( 2008 ), What determines the reconnection rate at the dayside magnetosphere?, J. Geophys. Res., 113, A07210, doi: 10.1029/2007JA012645.en_US
dc.identifier.citedreferenceBuonsanto, M. J., and O. G. Witasse ( 1999 ), An updated climatology of thermospheric neutral winds and F region ion drifts above Millstone Hill, J. Geophys. Res., 104, doi: 10.1029/1999JA900345.en_US
dc.identifier.citedreferenceChisham, G., et al. ( 2007 ), A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions, Surv. Geophys., 28, 33 – 109, doi: 10.1007/s10712-007-9017-8.en_US
dc.identifier.citedreferenceCoster, A., and S. Skone ( 2009 ), Monitoring storm‐enhanced density using IGS reference station data, J. Geodesy, 83 ( 3–4 ), 345 – 351.en_US
dc.identifier.citedreferenceDavid, M., J. J. Sojka, R. W. Schunk, M. W. Liemohn, and A. J. Coster ( 2011 ), Dayside midlatitude ionospheric response to storm time electric fields: A case study for 7 September 2002, J. Geophys. Res., 116, A12302, doi: 10.1029/2011JA016988.en_US
dc.identifier.citedreferenceDeng, Y., and A. J. Ridley ( 2006 ), Role of vertical ion convection in the high‐latitude ionospheric plasma distribution, J. Geophys. Res., 111, A09314, doi: 10.1029/2006JA011637.en_US
dc.identifier.citedreferenceDoherty, P., A. J. Coster, and W. Murtagh ( 2004 ), Space weather effects of October–November 2003, GPS Solutions, 8, 267 – 271.en_US
dc.identifier.citedreferenceFoster, J., W. Rideout, B. Sandel, W. Forrester, and F. Rich ( 2007 ), On the relationship of SAPS to storm‐enhanced density, J. Atmos. Terr. Phys., 69, 303 – 313, doi: 10.1016/j.jastp.2006.07.021.en_US
dc.identifier.citedreferenceFoster, J. C. ( 1993 ), Storm time plasma transport at middle and high latitudes, J. Geophys. Res., 98 ( A2 ), 1675 – 1689, doi: 10.1029/92JA02032.en_US
dc.identifier.citedreferenceFoster, J. C., and W. J. Burke ( 2002 ), SAPS: A new characterization for sub‐auroral electric fields, Eos. Trans. AGU, 83, 393, doi: 10.1029/2002EO000289.en_US
dc.identifier.citedreferenceFoster, J. C., and J. R. Doupnik ( 1984 ), Plasma convection in the vicinity of the dayside cleft, J. Geophys. Res., 89 ( A10 ), 9107 – 9113, doi: 10.1029/JA089iA10p09107.en_US
dc.identifier.citedreferenceFoster, J. C., and W. Rideout ( 2005 ), Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 32, L12S04, doi: 10.1029/2004GL021719.en_US
dc.identifier.citedreferenceFoster, J. C., and H. B. Vo ( 2002 ), Average characteristics and activity dependence of the subauroral polarization stream, J. Geophys. Res., 107 ( A12 ), 1475, doi: 10.1029/2002JA009409.en_US
dc.identifier.citedreferenceFoster, J. C., P. J. Erickson, A. J. Coster, J. Goldstein, and F. J. Rich ( 2002 ), Ionospheric signatures of plasmaspheric tails, Geophys. Res. Lett., 29 ( 13 ), doi: 10.1029/2002GL015067.en_US
dc.identifier.citedreferenceFoster, J. C., et al. ( 2005 ), Multiradar observations of the polar tongue of ionization, J. Geophys. Res., 110, A09S31, doi: 10.1029/2004JA010928.en_US
dc.identifier.citedreferenceFoster, J. C., P. J. Erickson, A. J. Coster, S. Thaller, J. Tao, J. R. Wygant, and J. W. Bonnell ( 2014 ), Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere, Geophys. Res. Lett., 41, 762 – 768, doi: 10.1002/2013GL059124.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. ( 2011 ), Storm‐time response of the thermosphere–ionosphere system, in Aeronomy of the Earth's Atmosphere and Ionosphere, IAGA Spec. Sopron Book Ser., vol. 2, edited by M. A. Abdu and D. Pancheva, pp. 419 – 434, Springer, Dordrecht, Netherlands, doi: 10.1007/978-94-007-0326-1_32.en_US
dc.identifier.citedreferenceGalperin, Y., Y. Ponomarev, and A. Zosimova ( 1974 ), Plasma convection in the polar ionosphere, Ann. Geophys., 30, 1.en_US
dc.identifier.citedreferenceGreenwald, R. A., et al. ( 1995 ), DARN/SuperDARN: A global view of the dynamics of high‐latitude convection, Space Sci. Rev., 71, 761 – 796, doi: 10.1007/BF00751350.en_US
dc.identifier.citedreferenceHeelis, R. A., J. J. Sojka, M. David, and R. W. Schunk ( 2009 ), Storm time density enhancements in the middle‐latitude dayside ionosphere, J. Geophys. Res., 114, A03315, doi: 10.1029/2008JA013690.en_US
dc.identifier.citedreferenceHeinselman, C. J., and M. J. Nicolls ( 2008 ), A Bayesian approach to electric field and E ‐region neutral wind estimation with the Poker Flat Advanced Modular Incoherent Scatter Radar, Radio Sci., 43, RS5013, doi: 10.1029/2007RS003805.en_US
dc.identifier.citedreferenceHuang, C.‐S., J. C. Foster, L. P. Goncharenko, P. J. Erickson, W. Rideout, and A. J. Coster ( 2005 ), A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network, J. Geophys. Res., 110, A06303, doi: 10.1029/2004JA010865.en_US
dc.identifier.citedreferenceLedvina, B. M., J. J. Makela, and P. M. Kintner ( 2002 ), First observations of intense GPS L1 amplitude scintillations at mid‐latitude, Geophys. Res. Lett., 29 ( 14 ), 1659, doi: 10.1029/2002GL014770.en_US
dc.identifier.citedreferenceLoranc, M., and J.‐P. St.‐Maurice ( 1994 ), A time‐dependent gyro‐kinetic model of thermal ion upflows in the high‐latitude F region, J. Geophys. Res., 99 ( A9 ), 17,429 – 17,451, doi: 10.1029/93JA01852.en_US
dc.identifier.citedreferenceLoranc, M., W. B. Hanson, R. A. Heelis, and J.‐P. St.‐Maurice ( 1991 ), A morphological study of vertical ionospheric flows in the high‐latitude F region, J. Geophys. Res., 96 ( A3 ), 3627 – 3646, doi: 10.1029/90JA02242.en_US
dc.identifier.citedreferenceLu, G., L. Goncharenko, M. J. Nicolls, A. Maute, A. Coster, and L. J. Paxton ( 2012 ), Ionospheric and thermospheric variations associated with prompt penetration electric fields, J. Geophys. Res., 117, A08312, doi: 10.1029/2012JA017769.en_US
dc.identifier.citedreferenceLu, G., J. D. Huba, and C. Valladares ( 2013 ), Modeling ionospheric super‐fountain effect based on the coupled TIMEGCM‐SAMI3, J. Geophys. Res. Space Physics, 118, 2527 – 2535, doi: 10.1002/jgra.50256.en_US
dc.identifier.citedreferenceLühr, H., S. Rentz, P. Ritter, H. Liu, and K. Häusler ( 2007 ), Average thermospheric wind patterns over the polar regions, as observed by CHAMP, Ann. Geophys., 25, 1093 – 1101, doi: 10.5194/angeo-25-1093-2007.en_US
dc.identifier.citedreferenceMannucci, A. J., B. D. Wilson, D. N. Yuan, C. H. Ho, U. J. Lindqwister, and T. F. Runge ( 1998 ), A global mapping technique for GPS‐derived ionospheric total electron content measurements, Radio Sci., 33 ( 3 ), 565 – 582, doi: 10.1029/97RS02707.en_US
dc.identifier.citedreferenceMannucci, A. J., B. T. Tsurutani, B. A. Iijima, A. Komjathy, A. Saito, W. D. Gonzalez, F. L. Guarnieri, J. U. Kozyra, and R. Skoug ( 2005 ), Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms,” Geophys. Res. Lett., 32, L12S02, doi: 10.1029/2004GL021467.en_US
dc.identifier.citedreferenceMoen, J., K. Oksavik, L. Alfonsi, Y. Daabakk, V. Romano, and L. Spogli ( 2013 ), Space weather challenges of the polar cap ionosphere, J. Space Weather Space Clim., 3, A02.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.