Show simple item record

Revisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidence

dc.contributor.authorLi, Hong‐dongen_US
dc.contributor.authorMenon, Rajasreeen_US
dc.contributor.authorOmenn, Gilbert S.en_US
dc.contributor.authorGuan, Yuanfangen_US
dc.date.accessioned2015-01-07T15:22:44Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2015-01-07T15:22:44Z
dc.date.issued2014-12en_US
dc.identifier.citationLi, Hong‐dong ; Menon, Rajasree; Omenn, Gilbert S.; Guan, Yuanfang (2014). "Revisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidence." PROTEOMICS 14(23-24): 2709-2718.en_US
dc.identifier.issn1615-9853en_US
dc.identifier.issn1615-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109787
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMajor Transcriptsen_US
dc.subject.otherIntegrative Proteogenomicsen_US
dc.subject.otherHighest Connected Isoformsen_US
dc.subject.otherCanonical Isoformsen_US
dc.subject.otherAlternative Splicingen_US
dc.titleRevisiting the identification of canonical splice isoforms through integration of functional genomics and proteomics evidenceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109787/1/pmic7911.pdf
dc.identifier.doi10.1002/pmic.201400170en_US
dc.identifier.sourcePROTEOMICSen_US
dc.identifier.citedreferenceMenon, R., Zhang, Q., Zhang, Y., Fermin, D. et al., Identification of novel alternative splice isoforms of circulating proteins in a mouse model of human pancreatic cancer. Cancer Res. 2009, 69, 300 – 309.en_US
dc.identifier.citedreferenceCastellana, N. E., Payne, S. H., Shen, Z., Stanke, M. et al., Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl. Acad. Sci. U S A 2008, 105, 21034 – 21038.en_US
dc.identifier.citedreferenceLi, H.‐D., Menon, R., Eksi, R., Guerler, A. et al., Modeling the functional relationship network at the splice isoform level through heterogeneous data integration. bioRxiv 2013. doi: 10.1101/001719.en_US
dc.identifier.citedreferencePark, C. Y., Wong, A. K., Greene, C. S., Rowland, J. et al., Functional knowledge transfer for high‐accuracy prediction of under‐studied biological processes. PLoS Comput. Biol. 2013, 9, e1002957.en_US
dc.identifier.citedreferenceGuan, Y., Ackert‐Bicknell, C. L., Kell, B., Troyanskaya, O. G., Hibbs, M. A., Functional genomics complements quantitative genetics in identifying disease‐gene associations. PLoS Comput. Biol. 2010, 6, e1000991.en_US
dc.identifier.citedreferenceGuan, Y., Myers, C. L., Lu, R., Lemischka, I. R. et al., A genomewide functional network for the laboratory mouse. PLoS Comput. Biol. 2008, 4, e1000165.en_US
dc.identifier.citedreferenceWong, A. K., Park, C. Y., Greene, C. S., Bongo, L. A. et al., IMP: a multi‐species functional genomics portal for integration, visualization and prediction of protein functions and networks. Nucleic Acids Res. 2012, 40, W484 – W490.en_US
dc.identifier.citedreferenceGuan, Y., Gorenshteyn, D., Schimenti, J. C., Handel, M. A. et al., Tissue‐specific functional networks for prioritizing phenotypes and disease genes. PLoS Comput. Biol. 2012, 8, e1002694.en_US
dc.identifier.citedreferenceAndrews, S., Tsochantaridis, I., Hofmann, T., Support vector machines for multiple‐instance learning. Advances Neural Information Processing Systems 15. 2003.en_US
dc.identifier.citedreferenceMaron, O., Lozano‐Perez, T., Advances in Neural Information Processing Systems 10. 1998, pp. 570 – 576.en_US
dc.identifier.citedreferenceEksi, R., Li, H.‐D., Menon, R., Wen, Y. et al., Systematically differentiating functions for alternatively spliced isoforms through integrating RNA‐seq data. PloS Comput. Biol. 2013, 9, e1003314.en_US
dc.identifier.citedreferenceLi, H.‐D., Menon, R., Omenn, G., Guan, Y., The emerging era of genomic data integration for analyzing splice isoform functions. Trends Genet. 2014, 30, 340 – 347.en_US
dc.identifier.citedreferenceOmenn, G. S., Guan, Y., Menon, R., A new class of protein cancer biomarker candidates: differentially expressed splice variants of ERBB2 (HER2/neu) and ERBB1 (EGFR) in breast cancer cell lines. J. Proteomics 2014, 107, 103 – 112.en_US
dc.identifier.citedreferenceTrapnell, C., Roberts, A., Goff, L., Pertea, G. et al., Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562 – 578.en_US
dc.identifier.citedreferenceTrapnell, C., Pachter, L., Salzberg, S. L., TopHat: discovering splice junctions with RNA‐Seq. Bioinformatics 2009, 25, 1105 – 1111.en_US
dc.identifier.citedreferenceDesiere, F., Deutsch, E. W., King, N. L., Nesvizhskii, A. I. et al., The PeptideAtlas project. Nucleic Acid Res. 2006, 34, D655 – D658.en_US
dc.identifier.citedreferenceCraig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466 – 1467.en_US
dc.identifier.citedreferenceWhiteaker, J. R., Zhang, H., Zhao, L., Wang, P. et al., Integrated pipeline for mass spectrometry‐based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J. Proteome Res. 2007, 6, 3962 – 3975.en_US
dc.identifier.citedreferenceMenon, R., Roy, A., Mukherjee, S., Belkin, S. et al., Functional implications of structural predictions for alternative splice proteins expressed in Her2/neu‐induced breast cancers. J. Proteome Res. 2011, 10, 5503 – 5511.en_US
dc.identifier.citedreferenceShi, R., Kumar, C., Zougman, A., Zhang, Y. et al., Analysis of the mouse liver proteome using advanced mass spectrometry. J. Proteome Res. 2007, 6, 2963 – 2972.en_US
dc.identifier.citedreferenceGeiger, T., Velic, A., Macek, B., Lundberg, E. et al., Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell. Proteomics 2013, 12, 1709 – 1722.en_US
dc.identifier.citedreferenceMackay, T. F. C., Epistasis and quantitative traits: using model organisms to study gene‐gene interactions. Nat. Rev. Genet. 2014, 15, 22 – 33.en_US
dc.identifier.citedreferencePark, S., Lehner, B., Epigenetic epistatic interactions constrain the evolution of gene expression. Mol. Syst. Biol. 2013, 9, 645.en_US
dc.identifier.citedreferenceGuo, Y., Xiao, P., Lei, S., Deng, F. et al., How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin 2008, 40, 426 – 436.en_US
dc.identifier.citedreferenceGry, M., Rimini, R., Stromberg, S., Asplund, A. et al., Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics 2009, 10, 365.en_US
dc.identifier.citedreferenceEllis, J. D., Barrios‐Rodiles, M., Çolak, R., Irimia, M. et al., Tissue‐specific alternative splicing remodels protein‐protein interaction networks. Mol. Cell 2012, 46, 884 – 892.en_US
dc.identifier.citedreferenceTress, M. L., Wesselink, J.‐J., Frankish, A., López, G. et al., Determination and validation of principal gene products. Bioinformatics 2008, 24, 11 – 17.en_US
dc.identifier.citedreferencePan, Q., Shai, O., Misquitta, C., Zhang, W. et al., Revealing global regulatory features of mammalian alternative splicing using a quantitative microarray platform. Mol. Cell. 2004, 16, 929 – 941.en_US
dc.identifier.citedreferencePan, Q., Shai, O., Lee, L. J., Frey, B. J., Blencowe, B. J., Deep surveying of alternative splicing complexity in the human transcriptome by high‐throughput sequencing. Nat. Genet. 2008, 40, 1413 – 1415.en_US
dc.identifier.citedreferenceMatlin, A. J., Clark, F., Smith, C. W. J., Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell. Biol. 2005, 6, 386 – 398.en_US
dc.identifier.citedreferenceGooding, C., Smith, C., Tropomyosin exons as models for alternative splicing. Adv. Exp. Med. Biol. 2008, 644, 27 – 42.en_US
dc.identifier.citedreferenceCalarco, J. A., Saltzman, A. L., Ip, J. Y., Blencowe, B. J., Technologies for the global discovery and analysis of alternative splicing. Adv. Exp. Med. Biol. 2007, 623, 64 – 84.en_US
dc.identifier.citedreferenceMittendorf, K. F., Deatherage, C. L., Ohi, M. D., Sanders, C. R., Tailoring of membrane proteins by alternative splicing of pre‐mRNA. Biochemistry 2012, 51, 5541 – 5556.en_US
dc.identifier.citedreferenceMenon, R., Omenn, G. S., Proteomic characterization of novel alternative splice variant proteins in human epidermal growth factor receptor 2/neu‐induced breast cancers. Cancer Res. 2010, 70, 3440 – 3449.en_US
dc.identifier.citedreferenceBlack, D. L., Mechanisms of alternative pre‐messenger RNA splicing. Annu. Rev. Biochem. 2007, 72, 291 – 336.en_US
dc.identifier.citedreferenceWan, J., Masuda, T., Hackler, L., Torres, K. M. et al., Dynamic usage of alternative splicing exons during mouse retina development. Nucleic Acids Res. 2011, 39, 7920 – 7930.en_US
dc.identifier.citedreferenceBarash, Y., Calarco, J. A., Gao, W., Pan, Q. et al., Deciphering the splicing code. Nature 2010, 465, 53 – 59.en_US
dc.identifier.citedreferenceTazi, J., Bakkour, N., Stamm, S., Alternative splicing and disease. Biochim. Biophys. Acta 2009, 1792, 14 – 26.en_US
dc.identifier.citedreferenceOmenn, G. S., Yocum, A. K., Menon, R., Alternative splice variants, a new class of protein cancer biomarker candidates: findings in pancreatic cancer and breast cancer with systems biology implications. Dis. Markers 2010, 28, 241 – 251.en_US
dc.identifier.citedreferenceGriffith, M., Griffith, O. L., Mwenifumbo, J., Goya, R. et al., Alternative expression analysis by RNA sequencing. Nat. Methods 2010, 7, 843 – 847.en_US
dc.identifier.citedreferenceEmig, D., Salomonis, N., Baumbach, J., Lengauer, T. et al., AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res. 2010, 38, W755 – 762.en_US
dc.identifier.citedreferenceBahar, T., Ben, S., Terry, G., Distribution of alternatively spliced transcript isoforms within human and mouse transcriptomes. J. Omics Res. 2011, 1, 1 – 5.en_US
dc.identifier.citedreferenceRodriguez, J. M., Maietta, P., Ezkurdia, I., Pietrelli, A. et al., APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids Res. 2013, 41, D110 – D117.en_US
dc.identifier.citedreferenceDjebali, S., Davis, C. A., Merkel, A., Dobin, A. et al., Landscape of transcription in human cells. Nature 2012, 489, 101 – 108.en_US
dc.identifier.citedreferenceGonzàlez‐Porta, M., Frankish, A., Rung, J., Harrow, J., Brazma, A., Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol. 2013, 14, R70.en_US
dc.identifier.citedreferenceSkotheim, R. I., Nees, M., Alternative splicing in cancer: noise, functional, or systematic? Int. J. Biochem. Cell. Biol. 2007, 39, 1432 – 1449.en_US
dc.identifier.citedreferencede Souza, J. E. S., Ramalho, R. F., Galante, P. A. F., Meyer, D., de Souza, S. J., Alternative splicing and genetic diversity: silencers are more frequently modified by SNVs associated with alternative exon/intron borders. Nucleic Acids Res. 2011, 39, 4942 – 4948.en_US
dc.identifier.citedreferenceDunham, I., Kundaje, A., Aldred, S. F., Collins, P. J. et al., An integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489, 57 – 74.en_US
dc.identifier.citedreferenceRenuse, S., Chaerkady, R., Pandey, A., Proteogenomics. Proteomics 2011, 11, 620 – 630.en_US
dc.identifier.citedreferencePandey, A., Lewitter, F., Nucleotide sequence databases: a gold mine for biologists. Trends Biochem. Sci. 1999, 24, 276 – 280.en_US
dc.identifier.citedreferenceKalume, D., Peri, S., Reddy, R., Zhong, J. et al., Genome annotation of Anopheles gambiae using mass spectrometry‐derived data. BMC Genomics 2005, 6, 128.en_US
dc.identifier.citedreferenceXia, D., Sanderson, S., Jones, A., Prieto, J. et al., The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol. 2008, 9, R116.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.