Show simple item record

Positive allosteric modulators of the μ‐opioid receptor: a novel approach for future pain medications

dc.contributor.authorBurford, N Ten_US
dc.contributor.authorTraynor, J Ren_US
dc.contributor.authorAlt, Aen_US
dc.date.accessioned2015-01-07T15:22:51Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationBurford, N T; Traynor, J R; Alt, A (2015). "Positive allosteric modulators of the μ‐opioid receptor: a novel approach for future pain medications." British Journal of Pharmacology (2): 277-286.en_US
dc.identifier.issn0007-1188en_US
dc.identifier.issn1476-5381en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109803
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherToleranceen_US
dc.subject.otherDependenceen_US
dc.subject.otherLigand Biasen_US
dc.subject.otherArrestinen_US
dc.subject.otherAllostericen_US
dc.subject.otherModulatoren_US
dc.subject.otherOpioiden_US
dc.subject.otherReceptoren_US
dc.subject.otherPainen_US
dc.subject.otherOpiateen_US
dc.titlePositive allosteric modulators of the μ‐opioid receptor: a novel approach for future pain medicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109803/1/bph12599.pdf
dc.identifier.doi10.1111/bph.12599en_US
dc.identifier.sourceBritish Journal of Pharmacologyen_US
dc.identifier.citedreferenceRivero G, Llorente J, McPherson J, Cooke A, Mundell SJ, McArdle CA et al. ( 2010 ). Endomorphin‐2: a biased agonist at the mu‐opioid receptor. Mol Pharmacol 82: 178 – 188.en_US
dc.identifier.citedreferenceRoques BP, Fournie‐Zaluski MC, Wurm M ( 2012 ). Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat Rev Drug Discov 11: 292 – 310.en_US
dc.identifier.citedreferenceRothman RB, Murphy DL, Xu H, Godin JA, Dersch CM, Partilla JS et al. ( 2007 ). Salvinorin A: allosteric interactions at the mu‐opioid receptor. J Pharmacol Exp Ther 320: 801 – 810.en_US
dc.identifier.citedreferenceSadee W, Wang D, Bilsky EJ ( 2005 ). Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76: 1427 – 1437.en_US
dc.identifier.citedreferenceSamama P, Cotecchia S, Costa T, Lefkowitz RJ ( 1993 ). A mutation‐induced activated state of the beta 2‐adrenergic receptor. Extending the ternary complex model. J Biol Chem 268: 4625 – 4636.en_US
dc.identifier.citedreferenceSheffler DJ, Roth BL ( 2003 ). Salvinorin A: the ‘magic mint’ hallucinogen finds a molecular target in the kappa opioid receptor. Trends Pharmacol Sci 24: 107 – 109.en_US
dc.identifier.citedreferenceSnyder SH, Pasternak GW ( 2003 ). Historical review: opioid receptors. Trends Pharmacol Sci 24: 198 – 205.en_US
dc.identifier.citedreferenceStockton JM, Birdsall NJ, Burgen AS, Hulme EC ( 1983 ). Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23: 551 – 557.en_US
dc.identifier.citedreferenceStockton SD Jr, Devi LA ( 2012 ). Functional relevance of mu‐delta opioid receptor heteromerization: a role in novel signaling and implications for the treatment of addiction disorders: from a symposium on new concepts in mu‐opioid pharmacology. Drug Alcohol Depend 121: 167 – 172.en_US
dc.identifier.citedreferenceThompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E et al. ( 2012 ). Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485: 395 – 399.en_US
dc.identifier.citedreferenceTota MR, Schimerlik MI ( 1990 ). Partial agonist effects on the interaction between the atrial muscarinic receptor and the inhibitory guanine nucleotide‐binding protein in a reconstituted system. Mol Pharmacol 37: 996 – 1004.en_US
dc.identifier.citedreferenceVallejo R, Barkin RL, Wang VC ( 2011 ). Pharmacology of opioids in the treatment of chronic pain syndromes. Pain Physician 14: E343 – E360.en_US
dc.identifier.citedreferenceViolin JD, Lefkowitz RJ ( 2007 ). Beta‐arrestin‐biased ligands at seven‐transmembrane receptors. Trends Pharmacol Sci 28: 416 – 422.en_US
dc.identifier.citedreferenceWaldhoer M, Bartlett SE, Whistler JL ( 2004 ). Opioid receptors. Annu Rev Biochem 73: 953 – 990.en_US
dc.identifier.citedreferenceWay EL, Loh HH, Shen FH ( 1969 ). Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther 167: 1 – 8.en_US
dc.identifier.citedreferenceWeiss JM, Morgan PH, Lutz MW, Kenakin TP ( 1996 ). The cubic ternary complex receptor‐occupancy model. III. resurrecting efficacy. J Theor Biol 181: 381 – 397.en_US
dc.identifier.citedreferenceWhalen EJ, Rajagopal S, Lefkowitz RJ ( 2011 ). Therapeutic potential of beta‐arrestin‐ and G protein‐biased agonists. Trends Mol Med 17: 126 – 139.en_US
dc.identifier.citedreferenceWhistler JL ( 2012 ). Examining the role of mu opioid receptor endocytosis in the beneficial and side‐effects of prolonged opioid use: from a symposium on new concepts in mu‐opioid pharmacology. Drug Alcohol Depend 121: 189 – 204.en_US
dc.identifier.citedreferenceWilliams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S et al. ( 2013 ). Regulation of mu‐opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev 65: 223 – 254.en_US
dc.identifier.citedreferenceWoodcock J ( 2009 ). A difficult balance – pain management, drug safety, and the FDA. N Engl J Med 361: 2105 – 2107.en_US
dc.identifier.citedreferenceWootten D, Savage EE, Valant C, May LT, Sloop KW, Ficorilli J et al. ( 2012 ). Allosteric modulation of endogenous metabolites as an avenue for drug discovery. Mol Pharmacol 82: 281 – 290.en_US
dc.identifier.citedreferenceWootten D, Christopoulos A, Sexton PM ( 2013 ). Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12: 630 – 644.en_US
dc.identifier.citedreferenceWu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E et al. ( 2012 ). Structure of the human kappa‐opioid receptor in complex with JDTic. Nature 485: 327 – 332.en_US
dc.identifier.citedreferenceYasuda K, Raynor K, Kong H, Breder CD, Takeda J, Reisine T et al. ( 1993 ). Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc Natl Acad Sci U S A 90: 6736 – 6740.en_US
dc.identifier.citedreferenceZadina JE, Hackler L, Ge LJ, Kastin AJ ( 1997 ). A potent and selective endogenous agonist for the mu‐opiate receptor. Nature 386: 499 – 502.en_US
dc.identifier.citedreferenceZhang L, Loh HH, Law PY ( 2013 ). A novel noncanonical signaling pathway for the mu‐opioid receptor. Mol Pharmacol 84: 844 – 853.en_US
dc.identifier.citedreferenceAlexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ and CGTP Collaborators ( 2013 ). The Concise Guide to PHARMACOLOGY 2013/14: G‐Protein Coupled Receptors. Br J Pharmacol 170: 1459 – 1581.en_US
dc.identifier.citedreferenceBailey CP, Connor M ( 2005 ). Opioids: cellular mechanisms of tolerance and physical dependence. Curr Opin Pharmacol 5: 60 – 68.en_US
dc.identifier.citedreferenceBassoni DL, Raab WJ, Achacoso PL, Loh CY, Wehrman TS ( 2012 ). Measurements of beta‐arrestin recruitment to activated seven transmembrane receptors using enzyme complementation. Methods Mol Biol 897: 181 – 203.en_US
dc.identifier.citedreferenceBian JM, Wu N, Su RB, Li J ( 2012 ). Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 32: 167 – 184.en_US
dc.identifier.citedreferenceBirdsall NJ, Lazareno S ( 2005 ). Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem 5: 523 – 543.en_US
dc.identifier.citedreferenceBohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT ( 1999 ). Enhanced morphine analgesia in mice lacking beta‐arrestin 2. Science 286: 2495 – 2498.en_US
dc.identifier.citedreferenceBohn LM, Gainetdinov RR, Lin FT, Lefkowitz RJ, Caron MG ( 2000 ). Mu‐opioid receptor desensitization by beta‐arrestin‐2 determines morphine tolerance but not dependence. Nature 408: 720 – 723.en_US
dc.identifier.citedreferenceBruns RF, Fergus JH ( 1990 ). Allosteric enhancement of adenosine A1 receptor binding and function by 2‐amino‐3‐benzoylthiophenes. Mol Pharmacol 38: 939 – 949.en_US
dc.identifier.citedreferenceBurford NT, Tolbert LM, Sadee W ( 1998 ). Specific G protein activation and mu‐opioid receptor internalization caused by morphine, DAMGO and endomorphin I. Eur J Pharmacol 342: 123 – 126.en_US
dc.identifier.citedreferenceBurford NT, Watson J, Bertekap R, Alt A ( 2011 ). Strategies for the identification of allosteric modulators of G‐protein‐coupled receptors. Biochem Pharmacol 81: 691 – 702.en_US
dc.identifier.citedreferenceBurford NT, Clark MJ, Wehrman TS, Gerritz SW, Banks M, O'Connell J et al. ( 2013 ). Discovery of positive allosteric modulators and silent allosteric modulators of the mu‐opioid receptor. Proc Natl Acad Sci U S A 110: 10830 – 10835.en_US
dc.identifier.citedreferenceChen Y, Mestek A, Liu J, Hurley JA, Yu L ( 1993 ). Molecular cloning and functional expression of a mu‐opioid receptor from rat brain. Mol Pharmacol 44: 8 – 12.en_US
dc.identifier.citedreferenceChristopoulos A, Kenakin T ( 2002 ). G protein‐coupled receptor allosterism and complexing. Pharmacol Rev 54: 323 – 374.en_US
dc.identifier.citedreferenceClark AL, Mitchelson F ( 1976 ). The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol 58: 323 – 331.en_US
dc.identifier.citedreferenceConn PJ, Christopoulos A, Lindsley CW ( 2009a ). Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8: 41 – 54.en_US
dc.identifier.citedreferenceConn PJ, Jones CK, Lindsley CW ( 2009b ). Subtype‐selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30: 148 – 155.en_US
dc.identifier.citedreferenceCorbett AD, Henderson G, McKnight AT, Paterson SJ ( 2006 ). 75 years of opioid research: the exciting but vain quest for the holy grail. Br J Pharmacol 147 ( Suppl. 1 ): S153 – S162.en_US
dc.identifier.citedreferenceCorder G, Doolen S, Donahue RR, Winter MK, Jutras BL, He Y et al. ( 2013 ). Constitutive mu‐opioid receptor activity leads to long‐term endogenous analgesia and dependence. Science 341: 1394 – 1399.en_US
dc.identifier.citedreferenceCosta T, Herz A ( 1989 ). Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP‐binding proteins. Proc Natl Acad Sci U S A 86: 7321 – 7325.en_US
dc.identifier.citedreferenceCostantino CM, Gomes I, Stockton SD, Lim MP, Devi LA ( 2012 ). Opioid receptor heteromers in analgesia. Expert Rev Mol Med 14: e9.en_US
dc.identifier.citedreferenceCox BM, Christie MJ, Devi L, Toll L, Traynor JR ( 2015 ). Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol 172: 317 – 323.en_US
dc.identifier.citedreferenceDavey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A ( 2012 ). Positive and negative allosteric modulators promote biased signaling at the calcium‐sensing receptor. Endocrinology 153: 1232 – 1241.en_US
dc.identifier.citedreferenceDe Lean A, Stadel JM, Lefkowitz RJ ( 1980 ). A ternary complex model explains the agonist‐specific binding properties of the adenylate cyclase‐coupled beta‐adrenergic receptor. J Biol Chem 255: 7108 – 7117.en_US
dc.identifier.citedreferenceDewire SM, Yamashita DS, Rominger DH, Liu G, Cowan CL, Graczyk TM et al. ( 2013 ). A G protein‐biased ligand at the mu‐opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine. J Pharmacol Exp Ther 344: 708 – 717.en_US
dc.identifier.citedreferenceEhlert FJ ( 1988 ). Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33: 187 – 194.en_US
dc.identifier.citedreferenceEmmerson PJ, Clark MJ, Mansour A, Akil H, Woods JH, Medzihradsky F ( 1996 ). Characterization of opioid agonist efficacy in a C6 glioma cell line expressing the mu opioid receptor. J Pharmacol Exp Ther 278: 1121 – 1127.en_US
dc.identifier.citedreferenceEvans CJ, Keith DE Jr, Morrison H, Magendzo K, Edwards RH ( 1992 ). Cloning of a delta opioid receptor by functional expression. Science 258: 1952 – 1955.en_US
dc.identifier.citedreferenceEvans T, Hepler JR, Masters SB, Brown JH, Harden TK ( 1985 ). Guanine nucleotide regulation of agonist binding to muscarinic cholinergic receptors. Relation to efficacy of agonists for stimulation of phosphoinositide breakdown and Ca2 + mobilization. Biochem J 232: 751 – 757.en_US
dc.identifier.citedreferenceGao ZG, Kim SK, Ijzerman AP, Jacobson KA ( 2005 ). Allosteric modulation of the adenosine family of receptors. Mini Rev Med Chem 5: 545 – 553.en_US
dc.identifier.citedreferenceGasparini F, Kuhn R, Pin JP ( 2002 ). Allosteric modulators of group I metabotropic glutamate receptors: novel subtype‐selective ligands and therapeutic perspectives. Curr Opin Pharmacol 2: 43 – 49.en_US
dc.identifier.citedreferenceGjoni T, Urwyler S ( 2008 ). Receptor activation involving positive allosteric modulation, unlike full agonism, does not result in GABAB receptor desensitization. Neuropharmacology 55: 1293 – 1299.en_US
dc.identifier.citedreferenceGomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA ( 2004 ). A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci U S A 101: 5135 – 5139.en_US
dc.identifier.citedreferenceGranier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI et al. ( 2012 ). Structure of the delta‐opioid receptor bound to naltrindole. Nature 485: 400 – 404.en_US
dc.identifier.citedreferenceGupta A, Mulder J, Gomes I, Rozenfeld R, Bushlin I, Ong E et al. ( 2010 ). Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 3: ra54.en_US
dc.identifier.citedreferenceHall DA ( 2000 ). Modeling the functional effects of allosteric modulators at pharmacological receptors: an extension of the two‐state model of receptor activation. Mol Pharmacol 58: 1412 – 1423.en_US
dc.identifier.citedreferenceHegadoren KM, O'Donnell T, Lanius R, Coupland NJ, Lacaze‐Masmonteil N ( 2009 ). The role of beta‐endorphin in the pathophysiology of major depression. Neuropeptides 43: 341 – 353.en_US
dc.identifier.citedreferenceHendricson A, Matchett M, Ferrante M, Ferrante C, Hunnicutt E, Westphal R et al. ( 2012 ). Design of an automated enhanced‐throughput platform for functional characterization of positive allosteric modulator‐induced leftward shifts in apparent agonist potency in vitro. J Lab Autom 17: 104 – 115.en_US
dc.identifier.citedreferenceJager D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M et al. ( 2007 ). Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein‐coupled receptor activation. J Biol Chem 282: 34968 – 34976.en_US
dc.identifier.citedreferenceJanecka A, Fichna J, Janecki T ( 2004 ). Opioid receptors and their ligands. Curr Top Med Chem 4: 1 – 17.en_US
dc.identifier.citedreferenceJuurlink DN, Dhalla IA ( 2012 ). Dependence and addiction during chronic opioid therapy. J Med Toxicol 8: 393 – 399.en_US
dc.identifier.citedreferenceKathmann M, Flau K, Redmer A, Trankle C, Schlicker E ( 2006 ). Cannabidiol is an allosteric modulator at mu‐ and delta‐opioid receptors. Naunyn Schmiedebergs Arch Pharmacol 372: 354 – 361.en_US
dc.identifier.citedreferenceKenakin T ( 2011 ). Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336: 296 – 302.en_US
dc.identifier.citedreferenceKenakin T, Christopoulos A ( 2013 ). Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12: 205 – 216.en_US
dc.identifier.citedreferenceKeov P, Sexton PM, Christopoulos A ( 2011 ). Allosteric modulation of G protein‐coupled receptors: a pharmacological perspective. Neuropharmacology 60: 24 – 35.en_US
dc.identifier.citedreferenceKieffer BL, Befort K, Gaveriaux‐Ruff C, Hirth CG ( 1992 ). The delta‐opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc Natl Acad Sci U S A 89: 12048 – 12052.en_US
dc.identifier.citedreferenceKoole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL et al. ( 2010 ). Allosteric ligands of the glucagon‐like peptide 1 receptor (GLP‐1R) differentially modulate endogenous and exogenous peptide responses in a pathway‐selective manner: implications for drug screening. Mol Pharmacol 78: 456 – 465.en_US
dc.identifier.citedreferenceLambert DG ( 2008 ). The nociceptin/orphanin FQ receptor: a target with broad therapeutic potential. Nat Rev Drug Discov 7: 694 – 710.en_US
dc.identifier.citedreferenceLangmead CJ ( 2012 ). Ligand properties and behaviours in an allosteric age. Trends Pharmacol Sci 33: 621 – 622.en_US
dc.identifier.citedreferenceLeach K, Sexton PM, Christopoulos A ( 2007 ). Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol Sci 28: 382 – 389.en_US
dc.identifier.citedreferenceLevine JD, Gordon NC, Jones RT, Fields HL ( 1978 ). The narcotic antagonist naloxone enhances clinical pain. Nature 272: 826 – 827.en_US
dc.identifier.citedreferenceLutz PE, Kieffer BL ( 2013 ). Opioid receptors: distinct roles in mood disorders. Trends Neurosci 36: 195 – 206.en_US
dc.identifier.citedreferenceMailman RB ( 2007 ). GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 28: 390 – 396.en_US
dc.identifier.citedreferenceManglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK et al. ( 2012 ). Crystal structure of the μ‐opioid receptor bound to a morphinan antagonist. Nature 485: 321 – 326.en_US
dc.identifier.citedreferenceMatthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I et al. ( 1996 ). Loss of morphine‐induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu‐opioid‐receptor gene. Nature 383: 819 – 823.en_US
dc.identifier.citedreferenceMay LT, Leach K, Sexton PM, Christopoulos A ( 2007 ). Allosteric modulation of G protein‐coupled receptors. Annu Rev Pharmacol Toxicol 47: 1 – 51.en_US
dc.identifier.citedreferenceMcNicol E, Horowicz‐Mehler N, Fisk RA, Bennett K, Gialeli‐Goudas M, Chew PW et al. ( 2003 ). Management of opioid side effects in cancer‐related and chronic noncancer pain: a systematic review. J Pain 4: 231 – 256.en_US
dc.identifier.citedreferenceMcPherson J, Rivero G, Baptist M, Llorente J, Al‐Sabah S, Krasel C et al. ( 2012 ). mu‐opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization. Mol Pharmacol 78: 756 – 766.en_US
dc.identifier.citedreferenceMelancon BJ, Hopkins CR, Wood MR, Emmitte KA, Niswender CM, Christopoulos A et al. ( 2012 ). Allosteric modulation of seven transmembrane spanning receptors: theory, practice, and opportunities for central nervous system drug discovery. J Med Chem 55: 1445 – 1464.en_US
dc.identifier.citedreferenceMelnikova I ( 2010 ). Pain market. Nat Rev Drug Discov 9: 589 – 590.en_US
dc.identifier.citedreferenceMeunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P et al. ( 1995 ). Isolation and structure of the endogenous agonist of opioid receptor‐like ORL1 receptor. Nature 377: 532 – 535.en_US
dc.identifier.citedreferenceMollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P et al. ( 1994 ). ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett 341: 33 – 38.en_US
dc.identifier.citedreferenceMonod J, Changeux JP, Jacob F ( 1963 ). Allosteric proteins and cellular control systems. J Mol Biol 6: 306 – 329.en_US
dc.identifier.citedreferenceMonod J, Wyman J, Changeux JP ( 1965 ). On the nature of allosteric transitions: a plausible model. J Mol Biol 12: 88 – 118.en_US
dc.identifier.citedreferencePradhan AA, Smith ML, Kieffer BL, Evans CJ ( 2012 ). Ligand‐directed signalling within the opioid receptor family. Br J Pharmacol 167: 960 – 969.en_US
dc.identifier.citedreferencePrzewlocki R, Przewlocka B ( 2001 ). Opioids in chronic pain. Eur J Pharmacol 429: 79 – 91.en_US
dc.identifier.citedreferenceRaynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI et al. ( 1994 ). Pharmacological characterization of the cloned kappa‐, delta‐, and mu‐opioid receptors. Mol Pharmacol 45: 330 – 334.en_US
dc.identifier.citedreferenceReinscheid RK, Nothacker HP, Bourson A, Ardati A, Henningsen RA, Bunzow JR et al. ( 1995 ). Orphanin FQ: a neuropeptide that activates an opioidlike G protein‐coupled receptor. Science 270: 792 – 794.en_US
dc.identifier.citedreferenceBlack JW, Leff P ( 1983 ). Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220: 141 – 162.en_US
dc.identifier.citedreferenceRives ML, Rossillo M, Liu‐Chen LY, Javitch JA ( 2012 ). 6'‐guanidinonaltrindole (6'‐GNTI) is a G protein‐biased kappa‐opioid receptor agonist that inhibits arrestin recruitment. J Biol Chem 287: 27050 – 27054.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.