Show simple item record

Axial level‐specific regulation of neuronal development: Lessons from PITX2

dc.contributor.authorWaite, Mindy R.en_US
dc.contributor.authorMartin, Donna M.en_US
dc.date.accessioned2015-01-07T15:23:11Z
dc.date.available2016-04-01T15:21:07Zen
dc.date.issued2015-02en_US
dc.identifier.citationWaite, Mindy R.; Martin, Donna M. (2015). "Axial level‐specific regulation of neuronal development: Lessons from PITX2." Journal of Neuroscience Research 93(2): 195-198.en_US
dc.identifier.issn0360-4012en_US
dc.identifier.issn1097-4547en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109833
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDifferentiationen_US
dc.subject.otherSpinal Corden_US
dc.subject.otherBrainen_US
dc.subject.otherMigrationen_US
dc.titleAxial level‐specific regulation of neuronal development: Lessons from PITX2en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelPsychologyen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109833/1/jnr23471.pdf
dc.identifier.doi10.1002/jnr.23471en_US
dc.identifier.sourceJournal of Neuroscience Researchen_US
dc.identifier.citedreferenceMartin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, Condie BG, Raphael Y, Martinez S, Camper SA. 2004. PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol 267: 93 – 108.en_US
dc.identifier.citedreferenceMatsui T, Hongo Y, Haizuka Y, Kaida K, Matsumura G, Martin DM, Kobayashi Y. 2013. C‐terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation. Neurosci Lett 548: 137 – 142.en_US
dc.identifier.citedreferenceMiyoshi G, Bessho Y, Yamada S, Kageyama R. 2004. Identification of a novel basic helix‐loop‐helix gene, Heslike, and its role in GABAergic neurogenesis. J Neurosci 24: 3672 – 3682.en_US
dc.identifier.citedreferenceMucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP, Goridis C. 1997. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme‐derived signals for its maintenance. Dev Biol 189: 275 – 284.en_US
dc.identifier.citedreferenceNakatani T, Mizuhara E, Minaki Y, Sakamoto Y, Ono Y. 2004. Helt, a novel basic‐helix‐loop‐helix transcriptional repressor expressed in the developing central nervous system. J Biol Chem 279: 16356 – 16367.en_US
dc.identifier.citedreferenceRyan AK, Blumberg B, Rodriguez‐Esteban C, Yonei‐Tamura S, Tamura K, Tsukui T, de la Pena J, Sabbagh W, Greenwald J, Choe S, Norris DP, Robertson EJ, Evans RM, Rosenfeld MG, Izpisua Belmonte JC. 1998. Pitx2 determines left–right asymmetry of internal organs in vertebrates. Nature 394: 545 – 551.en_US
dc.identifier.citedreferenceSchweickert A, Campione M, Steinbeisser H, Blum M. 2000. Pitx2 isoforms: involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left–right asymmetry. Mech Dev 90: 41 – 51.en_US
dc.identifier.citedreferenceSemina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel‐Bartelt J, Bierke‐Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC. 1996. Cloning and characterization of a novel bicoid‐related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14: 392 – 399.en_US
dc.identifier.citedreferenceSkidmore JM, Cramer JD, Martin JF, Martin DM. 2008. Cre fate mapping reveals lineage specific defects in neuronal migration with loss of Pitx2 function in the developing mouse hypothalamus and subthalamic nucleus. Mol Cell Neurosci 37: 696 – 707.en_US
dc.identifier.citedreferenceSkidmore JM, Waite MR, Alvarez‐Bolado G, Puelles L, Martin DM. 2012. A novel TaulacZ allele reveals a requirement for Pitx2 in formation of the mammillothalamic tract. Genesis 50: 67 – 73.en_US
dc.identifier.citedreferenceSmidt MP, Cox JJ, van Schaick HS, Coolen M, Schepers J, van der Kleij AM, Burbach JP. 2000. Analysis of three Ptx2 splice variants on transcriptional activity and differential expression pattern in the brain. J Neurochem 75: 1818 – 1825.en_US
dc.identifier.citedreferenceSuh H, Gage PJ, Drouin J, Camper SA. 2002. Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129: 329 – 337.en_US
dc.identifier.citedreferenceTsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH. 1994. An early haematopoietic defect in mice lacking the transcription factor GATA‐2. Nature 371: 221 – 226.en_US
dc.identifier.citedreferenceValverde F, Garcia C, Lopez‐Mascaraque L, De Carlos JA. 2000. Development of the mammillothalamic tract in normal and Pax‐6 mutant mice. J Comp Neurol 419: 485 – 504.en_US
dc.identifier.citedreferenceVann SD, Aggleton JP. 2003. Evidence of a spatial encoding deficit in rats with lesions of the mammillary bodies or mammillothalamic tract. J Neurosci 23: 3506 – 3514.en_US
dc.identifier.citedreferenceVann SD, Aggleton JP. 2004. The mammillary bodies: two memory systems in one? Nat Rev Neurosci 5: 35 – 44.en_US
dc.identifier.citedreferenceWaite MR, Skidmore JM, Billi AC, Martin JF, Martin DM. 2011. GABAergic and glutamatergic identities of developing midbrain Pitx2 neurons. Dev Dyn 240: 333 – 346.en_US
dc.identifier.citedreferenceWaite MR, Skaggs K, Kaviany P, Skidmore JM, Causeret F, Martin JF, Martin DM. 2012. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 49: 32 – 43.en_US
dc.identifier.citedreferenceWaite MR, Skidmore JM, Micucci JA, Shiratori H, Hamada H, Martin JF, Martin DM. 2013. Pleiotropic and isoform‐specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Mol Cell Neurosci 52: 128 – 139.en_US
dc.identifier.citedreferenceWestmoreland JJ, McEwen J, Moore BA, Jin Y, Condie BG. 2001. Conserved function of Caenorhabditis elegans UNC‐30 and mouse Pitx2 in controlling GABAergic neuron differentiation. J Neurosci 21: 6810 – 6819.en_US
dc.identifier.citedreferenceWinter SS, Wagner SJ, McMillin JL, Wallace DG. 2011. Mammillothalamic tract lesions disrupt dead reckoning in the rat. Eur J Neurosci 33: 371 – 381.en_US
dc.identifier.citedreferenceYu X, St Amand TR, Wang S, Li G, Zhang Y, Hu YP, Nguyen L, Qiu MS, Chen YP. 2001. Differential expression and functional analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 128: 1005 – 1013.en_US
dc.identifier.citedreferenceZagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB. 2009. A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64: 645 – 662.en_US
dc.identifier.citedreferenceAi D, Wang J, Amen M, Lu MF, Amendt BA, Martin JF. 2007. Nuclear factor 1 and T‐cell factor/LEF recognition elements regulate Pitx2 transcription in pituitary development. Mol Cell Biol 27: 5765 – 5775.en_US
dc.identifier.citedreferenceCazorla P, Smidt MP, O'Malley KL, Burbach JP. 2000. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 74: 1829 – 1837.en_US
dc.identifier.citedreferenceCox CJ, Espinoza HM, McWilliams B, Chappell K, Morton L, Hjalt TA, Semina EV, Amendt BA. 2002. Differential regulation of gene expression by PITX2 isoforms. J Biol Chem 277: 25001 – 25010.en_US
dc.identifier.citedreferenceDendrinos G, Hemelt M, Keller A. 2011. Prenatal VPA exposure and changes in sensory processing by the superior colliculus. Front Integr Neurosci 5: 68.en_US
dc.identifier.citedreferenceEssner JJ, Branford WW, Zhang J, Yost HJ. 2000. Mesendoderm and left–right brain, heart, and gut development are differentially regulated by Pitx2 isoforms. Development 127: 1081 – 1093.en_US
dc.identifier.citedreferenceGage PJ, Camper SA. 1997. Pituitary homeobox 2, a novel member of the bicoid‐related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 6: 457 – 464.en_US
dc.identifier.citedreferenceGage PJ, Suh H, Camper SA. 1999. Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643 – 4651.en_US
dc.identifier.citedreferenceGuillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL. 1993. Mammalian achaete‐scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75: 463 – 476.en_US
dc.identifier.citedreferenceGuimera J, Weisenhorn DV, Wurst W. 2006. Megane/Heslike is required for normal GABAergic differentiation in the mouse superior colliculus. Development 133: 3847 – 3857.en_US
dc.identifier.citedreferenceHjalt TA, Semina EV, Amendt BA, Murray JC. 2000. The Pitx2 protein in mouse development. Dev Dyn 218: 195 – 200.en_US
dc.identifier.citedreferenceIdrees F, Bloch‐Zupan A, Free SL, Vaideanu D, Thompson PJ, Ashley P, Brice G, Rutland P, Bitner‐Glindzicz M, Khaw PT, Fraser S, Sisodiya SM, Sowden JC. 2006. A novel homeobox mutation in the PITX2 gene in a family with Axenfeld‐Rieger syndrome associated with brain, ocular, and dental phenotypes. Am J Med Genet B Neuropsychiatr Genet 141: 184 – 191.en_US
dc.identifier.citedreferenceKala K, Haugas M, Lillevali K, Guimera J, Wurst W, Salminen M, Partanen J. 2009. Gata2 is a tissue‐specific postmitotic selector gene for midbrain GABAergic neurons. Development 136: 253 – 262.en_US
dc.identifier.citedreferenceKieusseian A, Chagraoui J, Kerdudo C, Mangeot PE, Gage PJ, Navarro N, Izac B, Uzan G, Forget BG, Dubart‐Kupperschmitt A. 2006. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 107: 492 – 500.en_US
dc.identifier.citedreferenceKim E, Ku J, Namkoong K, Lee W, Lee KS, Park JY, Lee SY, Kim JJ, Kim SI, Jung YC. 2009. Mammillothalamic functional connectivity and memory function in Wernicke's encephalopathy. Brain 132: 369 – 376.en_US
dc.identifier.citedreferenceKitamura K, Miura H, Miyagawa‐Tomita S, Yanazawa M, Katoh‐Fukui Y, Suzuki R, Ohuchi H, Suehiro A, Motegi Y, Nakahara Y, Kondo S, Yokoyama M. 1999. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra‐ and periocular mesoderm, and right pulmonary isomerism. Development 126: 5749 – 5758.en_US
dc.identifier.citedreferenceLin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, Izpisua‐Belmonte JC, Rosenfeld MG. 1999. Pitx2 regulates lung asymmetry, cardiac positioning, and pituitary and tooth morphogenesis. Nature 401: 279 – 282.en_US
dc.identifier.citedreferenceLindberg C, Wunderlich M, Ratliff J, Dinsmore J, Jacoby DB. 1998. Regulated expression of the homeobox gene, rPtx2, in the developing rat. Brain Res Dev Brain Res 110: 215 – 226.en_US
dc.identifier.citedreferenceLiu C, Liu W, Lu MF, Brown NA, Martin JF. 2001. Regulation of left–right asymmetry by thresholds of Pitx2c activity. Development 128: 2039 – 2048.en_US
dc.identifier.citedreferenceLiu W, Selever J, Lu MF, Martin JF. 2003. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis, and cell migration. Development 130: 6375 – 6385.en_US
dc.identifier.citedreferenceMartin DM, Skidmore JM, Fox SE, Gage PJ, Camper SA. 2002. Pitx2 distinguishes subtypes of terminally differentiated neurons in the developing mouse neuroepithelium. Dev Biol 252: 84 – 99.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.