Show simple item record

The liquid carbon challenge: evolving views on transportation fuels and climate

dc.contributor.authorDeCicco, John M.en_US
dc.date.accessioned2015-01-07T15:23:11Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationDeCicco, John M. (2015). "The liquid carbon challenge: evolving views on transportation fuels and climate." Wiley Interdisciplinary Reviews: Energy and Environment 4(1): 98-114.en_US
dc.identifier.issn2041-8396en_US
dc.identifier.issn2041-840Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109834
dc.publisherWiley Periodicals, Inc.en_US
dc.titleThe liquid carbon challenge: evolving views on transportation fuels and climateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109834/1/wene133.pdf
dc.identifier.doi10.1002/wene.133en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Energy and Environmenten_US
dc.identifier.citedreferenceZanchi G, Pena N, Bird N. The upfront carbon debt of bioenergy. Report. Graz: Joanneum Research; 2010.en_US
dc.identifier.citedreferencevan Vuuren DP, van Vliet J, Stehfest E. Future bio‐energy potential under various natural constraints. Energy Policy 2009, 37: 4220 – 4230.en_US
dc.identifier.citedreferenceRabl A, Benoist A, Dron D, Peuportier B, Spadaro JV, Zoughaib A. How to account for CO 2 emissions from biomass in an LCA. Int J Life Cycle Assess 2007, 12: 281.en_US
dc.identifier.citedreferenceJohnson E. Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 2009, 29: 165 – 168.en_US
dc.identifier.citedreferenceDelucchi MA. Beyond lifecycle analysis: developing a better tool for simulating policy impacts. In: Ogden J, Anderson L, eds. Sustainable Transportation Energy Pathways, Chapter 13. Davis, CA: Institute of Transportation Studies, University of California, Davis; 2011.en_US
dc.identifier.citedreferenceWhitehead AN. Science and The Modern World: Lowell Lectures, 1925. New York, NY: Macmillan; 1927.en_US
dc.identifier.citedreferenceDeCicco JM. Factoring the car‐climate challenge: insights and implications. Energy Policy 2013, 59: 382 – 392.en_US
dc.identifier.citedreferenceNRC. Transitions to alternative vehicles and fuels. Report by the National Research Council. Washington, DC: National Academies Press; 2013.en_US
dc.identifier.citedreferenceSmith WK, Cleveland CC, Reed SC, Running SW. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity. Geophys Res Lett 2014, 41: 449 – 455.en_US
dc.identifier.citedreferenceTavoni M, Socolow R. Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim Change 2013, 118: 1 – 14.en_US
dc.identifier.citedreferenceMeadowcroft J. Exploring negative territory: carbon dioxide removal and climate policy initiatives. Clim Change 2013, 118: 137 – 149.en_US
dc.identifier.citedreferenceAzar C, Lindgren K, Obersteiner M, Riahi K, van Vuuren DP, den Elzen J, Möllersten K, Larson ED. The feasibility of low CO 2 concentration targets and the role of bio‐energy with carbon capture and storage (BECCS). Clim Change 2010, 100: 195 – 202.en_US
dc.identifier.citedreferenceAPS. Direct air capture of CO 2 with chemicals. Report. College Park, MD: American Physical Society; 2011.en_US
dc.identifier.citedreferenceSmith LJ, Torn MS. Ecological limits to terrestrial biological carbon dioxide removal. Clim Change 2013, 118: 89 – 103.en_US
dc.identifier.citedreferenceIEA. World Energy Outlook 2012. Paris: International Energy Agency; 2012.en_US
dc.identifier.citedreferenceIEA. Biofuels for Transport: An International Perspective. Paris: International Energy Agency; 2004.en_US
dc.identifier.citedreferenceIEA. Technology Roadmap: Biofuels for Transport. Paris: International Energy Agency; 2011.en_US
dc.identifier.citedreferenceLe Quéré C, Peters GP, Andres RJ, Andrew RM, Boden T, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R et al. Global carbon budget 2013. Earth Syst Sci Data Discuss 2013, 6: 689 – 760. doi: 10.5194/essdd-6-689-2013 Available at: cdiac.ornl.gov/GCP/ (Accessed December 19, 2013).en_US
dc.identifier.citedreferenceIPCC. Guidelines for National Greenhouse Gas Inventories; 2006. Available at: www.ipcc‐nggip.iges.or.jp/public/2006gl/index.html (Accessed November 25, 2013).en_US
dc.identifier.citedreferenceDeCicco JM. Biofuel's carbon balance: doubts, certainties and implications. Clim Change 2013, 121: 801 – 814.en_US
dc.identifier.citedreferenceWade N. Oil pinch stirs dreams of moonshine travel. Science 1979, 204: 928 – 929.en_US
dc.identifier.citedreferenceFarrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM. Ethanol can contribute to energy and environmental goals. Science 2006, 311: 506 – 508.en_US
dc.identifier.citedreferenceDeLuchi MA, Johnston RA, Sperling D. Transportation fuels and the greenhouse effect. Transport Res Rec 1988, 1175: 33 – 44.en_US
dc.identifier.citedreferenceDeLuchi MA. Emissions of greenhouse gases from the use of transportation fuels and electricity. Report ANL/ESD/TM‐22. Argonne, IL: Argonne National Laboratory, Center for Transportation Research; 1991.en_US
dc.identifier.citedreferenceWang MQ. Development and Use of the GREET Model to Estimate Fuel Cycle Energy Use and Emissions of Various Transportation Technologies and Fuels. Argonne, IL: Argonne National Laboratory, Center for Transportation Research; 1996.en_US
dc.identifier.citedreferenceWilliams I, Kempa S, Coelloa J, Turner DA, Wright LA. A beginner's guide to carbon footprinting. Carbon Manage 2012, 3: 55 – 67.en_US
dc.identifier.citedreferenceGM‐ANL. Well‐to‐wheels analysis of advanced fuel/vehicle systems: a North American study of energy use, greenhouse gas emissions, and criteria pollutant emissions. Report by General Motors Corporation and Argonne National Laboratory. Argonne, IL: Argonne National Laboratory, Center for Transportation Research; 2005en_US
dc.identifier.citedreferenceHeywood J, Baptista P, Berry I, Bhatt K, Cheah L, de Sisternes F, Karplus V, Keith D, Khusid M, MacKenzie D, McAulay J. An action plan for cars: policies needed to reduce U.S. petroleum consumption and greenhouse gas emissions. MIT Energy Initiative Report. Cambridge, MA: Massachusetts Institute of Technology; 2009en_US
dc.identifier.citedreferenceUNEP. Towards Sustainable Production and Use of Resources: Assessing Biofuels. Paris: United Nations Environment Programme; 2009.en_US
dc.identifier.citedreferenceIEA. Transport, Energy and CO 2: Moving Toward Sustainability. Paris: International Energy Agency; 2009.en_US
dc.identifier.citedreferenceNRC. America's energy future: technology and transformation. Report of the National Research Council. Washington, DC: National Academies Press; 2009.en_US
dc.identifier.citedreferenceMcKone FE, Nazaroff WW, Berck P, Auffhammer M, Lipman T, Torn MS, Masanet E, Lobscheid A, Santero N, Mishra U et al. Grand challenges for life‐cycle assessment of biofuels. Environ Sci Technol 2011, 45: 1751 – 1756.en_US
dc.identifier.citedreferenceJRC. Well‐to‐wheels analysis of future automotive fuels and powertrains in the European context. Well‐to‐Tank Report, Version 4.0. Ispra: European Commission, Joint Research Centre; 2013en_US
dc.identifier.citedreferenceIPCC. Bioenergy. In: Edenhofer O et al., eds. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Chapter 2. Cambridge: Cambridge University Press; 2011.en_US
dc.identifier.citedreferenceLarson ED. A review of lifecycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 2006, X: 109 – 126.en_US
dc.identifier.citedreferenceCherubini F, Bird ND, Cowieb A, Jungmeiera G, Schlamadinger B, Woess‐Gallasch S. Energy‐ and greenhouse gas‐based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour Conserv Recyc 2009, 53: 434 – 447.en_US
dc.identifier.citedreferenceCRC. Review of transportation fuel life cycle analysis. CRC Report E‐88, prepared by Life Cycle Associates. Alpharetta, GA: Coordinating Research Council; 2011. Available at: www.crcao.com (Accessed December 15, 2013).en_US
dc.identifier.citedreferenceDavis SC, Anderson‐Teixeira KJ, DeLucia EH. Life‐cycle analysis and the ecology of biofuels. Trends Plant Sci 2009, 14: 140 – 146. doi: 10.1016/j.tplants.2008.12.006.en_US
dc.identifier.citedreferenceEPA. Regulation of fuels and fuel additives: changes to renewable fuel standard program; final rule. Washington, DC: US Environmental Protection Agency. Fed Regist 2010, 75: 14669ff.en_US
dc.identifier.citedreferenceCARB. Final Regulation Order: Low Carbon Fuel Standard. Sacramento, CA: California Air Resources Board Available at: www.arb.ca.gov/regact/2009/lcfs09/finalfro.pdf; 2010.en_US
dc.identifier.citedreferenceEU. Directive 2009/30/EC of the European Parliament and of the Council of 23 April 2009, as regards the specification of petrol, diesel and gas‐oil and introducing a mechanism to monitor and reduce greenhouse gas emissions. Off J Eur Union 2009, L 140: 88ff.en_US
dc.identifier.citedreferenceEU. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources. Off J Eur Union 2009, L 140: 16ff.en_US
dc.identifier.citedreferenceFargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science 2008, 319: 1235 – 1238.en_US
dc.identifier.citedreferenceSearchinger T, Heimlich F, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu TH. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land‐use change. Science 2008, 319: 1238 – 1240.en_US
dc.identifier.citedreferenceGnansounou E, Dauriat A, Panichelli L, Villegas J. Energy and greenhouse gas balances of biofuels: biases induced by LCA modeling choices. J Sci Ind Res 2008, 67: 885 – 897.en_US
dc.identifier.citedreferenceEDF. Workshop on Measuring and Modeling the Lifecycle Greenhouse Gas Impacts of Transportation Fuels. Co‐sponsored by the Environmental Defense Fund, Energy Biosciences Institute, and Energy and Resources Group at the University of California, Berkeley, CA, 2–3 July, 2008.en_US
dc.identifier.citedreferenceFairley P. Next generation biofuels. Nature 2011, 474: S4 – S5.en_US
dc.identifier.citedreferenceHuettner DA. Net energy analysis: an economic perspective. Science 1976, 192: 101 – 104.en_US
dc.identifier.citedreferenceDelucchi MA. Estimating the climate impact of transportation fuels: moving beyond conventional lifecycle analysis toward integrated modeling systems and scenario analysis. Proc Wash Acad Sci 2013, Fall: 43 – 66.en_US
dc.identifier.citedreferenceMullins KA, Griffin WM, Matthews HS. Policy implications of uncertainty in modeled lifecycle greenhouse gas emissions of biofuels. Environ Sci Technol 2011, 45: 132 – 138.en_US
dc.identifier.citedreferencePlevin RJ, Delucchi MA, Creutzig F. Using attributional life cycle assessment to estimate climate‐change mitigation benefits misleads policy makers. J Ind Ecol 2014, 18: 73 – 83. doi: 10.1111/jiec.12074.en_US
dc.identifier.citedreferenceCarbon Dioxide Information and Analysis Center (CDIAC). Global fossil‐fuel CO 2 emissions. Available at: cdiac.ornl.gov/ (Accessed December 19, 2013).en_US
dc.identifier.citedreferenceGlobal Carbon Project (GCP). Global carbon budget 2013. Available at: www.globalcarbonproject.org/ (Accessed December 19, 2013).en_US
dc.identifier.citedreferenceSearchinger TD. Biofuels and the need for additional carbon. Environ Res Lett 2010, 5 ( 024007 ): 1 – 10. doi: 10.1088/1748-9326/5/2/024007.en_US
dc.identifier.citedreferenceSearchinger TE, Hamburg SP, Melillo J, Chameides W, Havlik P, Kammen DM, Likens GE, Lubowski RN, Obersteiner M, Oppenheimer M et al. Fixing a critical climate accounting error. Science 2009, 326: 527 – 528.en_US
dc.identifier.citedreferenceEIA. Monthly Energy Review. Washington, DC: Energy Information Administration Available at: www.eia.gov/mer/index.cfm; 2013.en_US
dc.identifier.citedreferenceEPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2011. Washington, DC: US Environmental Protection Agency Available at: www.epa.gov/climatechange/ghgemissions/usinventoryreport.html; 2013.en_US
dc.identifier.citedreferencePlevin RJ, O'Hare M, Jones AD, Torn MS, Gibbs HK. Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 2010, 44: 8015 – 8021.en_US
dc.identifier.citedreferenceMelillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Felzer BS, Wang X, Sokolov AP, Schlosser CA. Indirect emissions from biofuels: how important? Science 2009, 326: 1397 – 1399.en_US
dc.identifier.citedreferenceMosnier A, Havlik P, Valin H, Baker J, Murray B, Feng S, Obersteiner M, McCarl BA, Rose SK, Schneider UA. Alternative U.S. biofuel mandates and global GHG emissions: the role of land use change, crop management and yield growth. Energy Policy 2013, 57: 602 – 614.en_US
dc.identifier.citedreferenceNRC. Renewable fuel standard: potential economic and environmental effects of US biofuel policy. Report of the National Research Council. Washington, DC: National Academy Press; 2011.en_US
dc.identifier.citedreferenceDelucchi MA. Impacts of biofuels on climate change, water use and land use. Ann N Y Acad Sci 2010, 1195: 28 – 45.en_US
dc.identifier.citedreferenceWang MQ. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model. Argonne, IL: Argonne National Laboratory, Center for Transportation Research (see greet.anl.gov for latest version of the model itself); 1999.en_US
dc.identifier.citedreferenceSchlamadinger B, Apps M, Bohlin F, Gustavvson L, Jungmeier G, Marland G, Pingoud K, Savolainen I. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 1997, 13: 359 – 375.en_US
dc.identifier.citedreferenceKelly DL, Kolstad CD. Integrated assessment models for climate change control. In: Folmer H, Tietenberg T, eds. International Yearbook of Environmental and Resource Economics 1999/2000: A Survey of Current Issues. Cheltenham: Edward Elgar; 1999.en_US
dc.identifier.citedreferenceHunt RG, Franklin WE. LCA: how it came about. Int J Life Cycle Assess 1996, 1: 4 – 7.en_US
dc.identifier.citedreferenceISO. Environmental management – life cycle assessment – principles and framework. ISO 14040:2006(E). Geneva: International Standards Organization; 2006.en_US
dc.identifier.citedreferenceEPA. Alternative fuels for automotive transportation: a feasibility study. Report EPA‐460/3/74‐012. Ann Arbor, MI: U.S. Environmental Protection Agency, Office of Mobile Source Air Pollution Control; 1974.en_US
dc.identifier.citedreferenceDelucchi MA. Overview of the Lifecycle Emissions Model (LEM). Report UCD‐ITS‐RR‐02‐02. Davis, CA: University of California, Davis, Institute of Transportation Studies; 2002.en_US
dc.identifier.citedreferenceWang MQ. Fuel cycle analysis of conventional and alternative fuel vehicles. In: Cleveland CJ, ed. Encyclopedia of Energy 2. New York, NY: Elsevier; 2004, 771 – 789.en_US
dc.identifier.citedreferenceGnansounou E, Panichelli L, Dauriat A, Villegas JD. Accounting for indirect land‐use changes in GHG balances of biofuels: review of current approaches. LASEN Working Paper Ref. 437.101. Lausanne, CH: Ecole Polytechnique Fédérale de Lausanne, Laboratoire de systèmes énergétiques; 2008. Available at: http://lasen.epfl.ch (Accessed November 24, 2013).en_US
dc.identifier.citedreferenceFarrell AE, Sperling D. A low‐carbon fuel standard for California, Part 1: technical analysis. Report UCD‐ITS‐RR‐07‐07. Davis, CA: University of California, Davis, Institute of Transportation Studies; 2007.en_US
dc.identifier.citedreferenceYeh S, Lutsey NP, Parker NC. Assessment of technologies to meet a low carbon fuel standard. Environ Sci Technol 2009, 43: 6907 – 6914.en_US
dc.identifier.citedreferenceDeLuchi MA. Emissions of greenhouse gases from the use of gasoline, methanol, and other alternative transportation fuels. In: Kohl WL, ed. Methanol as an Alternative Fuel Choice: An Assessment, Chapter 8. Washington, DC: Johns Hopkins University, Foreign Policy Institute; 1990.en_US
dc.identifier.citedreferenceEPA. Regulation of fuels and fuel additives: changes to the renewable fuel standard program; proposed rule. Washington, DC: U.S. Environmental Protection Agency. Fed Regist 2009, 74: 24904ff.en_US
dc.identifier.citedreferenceDoornbosch R, Steenblik R. Biofuels: is the cure worse than the disease? Report from the Roundtable on Sustainable Development. Paris: Organization for Economic Cooperation and Development (OECD); 2007.en_US
dc.identifier.citedreferenceSawyer D. Climate change, biofuels and eco‐social impacts in the Brazilian Amazon and Cerrado. Phil Trans R Soc Lond B Bol Sci 2008, 363: 1747 – 1752.en_US
dc.identifier.citedreferenceReview G. The Gallagher Review of the Indirect Effects of Biofuels Production. Hastings: Renewable Fuels Agency; 2008.en_US
dc.identifier.citedreferenceFritsche UR, Wiegmann K. Indirect land use change and biofuels. Report IP/A/ENVI/ST/2010‐15, prepared for the Policy Department. Brussels: European Parliament; 2011.en_US
dc.identifier.citedreferenceGibbs HK, Ruesch AS, Achard F, Clayton MK, Holmgren P, Ramankutty N, Foley JA. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci U S A 2010, 107: 16732 – 16737. doi: 10.1073/pnas.0910275107.en_US
dc.identifier.citedreferenceJRC‐IE. Indirect land use change from increased biofuels demand: comparison of models and results for marginal biofuels production from different feedstocks. Report EUR 24485 EN. Ispra: European Commission, Joint Research Centre and Institute for Energy; 2010.en_US
dc.identifier.citedreferenceUSDA. Measuring the indirect land‐use change associated with increased biofuel feedstock production: a review of modeling efforts. Report to Congress. Washington, DC: U.S. Department of Agriculture; 2011.en_US
dc.identifier.citedreferenceKhanna M, Crago CL. Measuring indirect land use change with biofuels: implications for policy. Annu Rev Resour Econ 2012, 4: 161 – 184.en_US
dc.identifier.citedreferenceCARB. LCFS lookup tables as of December 2012. Sacramento, CA: California Air Resources Board; 2012. Available at: www.arb.ca.gov/fuels/lcfs/lu_tables_11282012.pdf (Accessed December 15, 2013).en_US
dc.identifier.citedreferenceHill J, Nelson E, Tilman D, Polasky S, Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 2006, 103: 11206 – 11210.en_US
dc.identifier.citedreferenceCRC. Transportation fuel life cycle assessment: validation and uncertainty of well‐to‐wheel GHG estimates. CRC Report No. E‐102, prepared by (S&T)2 Consultants. Alpharetta, GA: Coordinating Research Council; 2013. Available at: www.crcao.com (Accessed December 4, 2013).en_US
dc.identifier.citedreferencePatzek TW, Anti SM, Campos F, Ha WK, Lee J, Li B, Padnick J, Yee SA. Ethanol from corn: clean renewable fuel for the future, or drain on our resources and pockets? Environ Dev Sustain 2005, 7: 319 – 336.en_US
dc.identifier.citedreferenceMcCarl B. Lifecycle carbon footprint, bioenergy and leakage: empirical investigations. Farm Foundation Workshop on the Lifecycle Carbon Footprint of Biofuels, Miami, FL, 2008.en_US
dc.identifier.citedreferenceHertel TW, Golub AA, Jones AD, O'Hare M, Plevin RJ, Kammen DM. Effects of U.S. maize ethanol on global land use and greenhouse gas emissions: estimating market‐mediated responses. Bioscience 2010, 60: 223 – 231.en_US
dc.identifier.citedreferenceAndress D, Nguyen TD, Das S. Low‐carbon fuel standard: status and analytic issues. Energy Policy 2010, 38: 580 – 591.en_US
dc.identifier.citedreferenceMarland G, Marland S. Should we store carbon in trees? Waste Air Soil Pollut 1992, 64: 181 – 195.en_US
dc.identifier.citedreferenceSchlamadinger B, Marland G. The role of forest and bioenergy strategies in the global carbon cycle. Biomass Bioenergy 1996, 10: 275 – 300.en_US
dc.identifier.citedreferenceChambers RS, Herendeen RA, Joyce JJ, Penner PS. Gasohol: does it or doesn't it produce positive net energy? Science 1979, 206: 789 – 795.en_US
dc.identifier.citedreferenceBird DN, Pena N, Frieden D, Zanchi G. Zero, one, or in between: evaluation of alternative national and entity‐level accounting for bioenergy. Glob Change Biol Bioenergy 2012, 4: 576 – 587.en_US
dc.identifier.citedreferenceIPCC. Land Use, Land‐Use Change and Forestry (LULUCF); 2013. Available at: https://unfccc.int/methods/lulucf/items/4129.php (Accessed November 25, 2013).en_US
dc.identifier.citedreferenceDeCicco JM. Biofuels and carbon management. Clim Change 2012, 111: 627 – 640.en_US
dc.identifier.citedreferenceSmith WK, Cleveland CC, Reed SC, Miller NL, Running SW. Bioenergy potential of the United States constrained by satellite observations of existing productivity. Environ Sci Technol 2012, 46: 3536 – 3544.en_US
dc.identifier.citedreferenceLal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, eds. Recarbonization of the Biosphere: Ecosystems and the Global Carbon Cycle. Heidelberg: Springer; 2012.en_US
dc.identifier.citedreferenceBrown DG, Robinson DT, French NHF, Reed BC, eds. Land Use and the Carbon Cycle: Advances in Integrated Science, Management, and Policy. Cambridge: Cambridge University Press; 2013.en_US
dc.identifier.citedreferenceManne A, Mendelsohn R, Richels R. MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 1993, 23: 17 – 34.en_US
dc.identifier.citedreferenceJGCRI. Global Change Assessment Model (GCAM). College Park, MD: Joint Global Change Research Institute; 2013. Available at: http://www.globalchange.umd.edu/models/gcam/ (Accessed December 17, 2013).en_US
dc.identifier.citedreferenceMoss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463: 747 – 756.en_US
dc.identifier.citedreferenceReilly J, Paltsev S. Biomass energy and competition for land. In: Hertel T, Rose TS, Tol R, eds. Economic Analysis of Land Use in Global Climate Change Policy. Oxford: Routledge; 2009, 184 – 207.en_US
dc.identifier.citedreferenceWise M, Calvin K, Thomson A, Clarke L, Bond‐Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J. Implications of limiting CO 2 concentrations for land use and energy. Science 2009, 324: 1183 – 1186.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.