Show simple item record

Small Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapy

dc.contributor.authorOrringer, DAen_US
dc.contributor.authorKoo, YEen_US
dc.contributor.authorChen, Ten_US
dc.contributor.authorKopelman, Ren_US
dc.contributor.authorSagher, Oen_US
dc.contributor.authorPhilbert, MAen_US
dc.date.accessioned2015-01-07T15:23:15Z
dc.date.available2015-01-07T15:23:15Z
dc.date.issued2009-05en_US
dc.identifier.citationOrringer, DA; Koo, YE; Chen, T; Kopelman, R; Sagher, O; Philbert, MA (2009). "Small Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapy." Clinical Pharmacology & Therapeutics 85(5): 531-534.en_US
dc.identifier.issn0009-9236en_US
dc.identifier.issn1532-6535en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109842
dc.publisherWiley Periodicals, Inc.en_US
dc.titleSmall Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109842/1/cptclpt2008296.pdf
dc.identifier.doi10.1038/clpt.2008.296en_US
dc.identifier.sourceClinical Pharmacology & Therapeuticsen_US
dc.identifier.citedreferenceDong, Y. & Feng, S.S. Poly(D,L‐lactide‐co‐glycolide) (PLGA) nanoparticles prepared by high pressure homogenization for paclitaxel chemotherapy. Int. J. Pharm. 342, 208 – 214 ( 2007 ).en_US
dc.identifier.citedreferenceKircher, M.F., Mahmood, U., King, R.S., Weissleder, R. & Josephson, L. A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res. 63, 8122 – 8125 ( 2003 ).en_US
dc.identifier.citedreferenceVeiseh, O. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett. 5, 1003 – 1008 ( 2005 ).en_US
dc.identifier.citedreferenceTrehin, R., Figueiredo, J.L., Pittet, M.J., Weissleder, R., Josephson, L. & Mahmood, U. Fluorescent nanoparticle uptake for brain tumor visualization. Neoplasia 8, 302 – 311 ( 2006 ).en_US
dc.identifier.citedreferenceJackson, H. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 60, 524 – 529; discussion 529–530 ( 2007 ).en_US
dc.identifier.citedreferenceBrioschi, A., Zenga, F., Zara, G.P., Gasco, M.R., Ducati, A. & Mauro, A. Solid lipid nanoparticles: could they help to improve the efficacy of pharmacologic treatments for brain tumors? Neurol. Res. 29, 324 – 330 ( 2007 ).en_US
dc.identifier.citedreferenceZara, G.P., Cavalli, R., Bargoni, A., Fundarò, A., Vighetto, D. & Gasco, M.R. Intravenous administration to rabbits of non‐stealth and stealth doxorubicin‐loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J. Drug Target. 10, 327 – 335 ( 2002 ).en_US
dc.identifier.citedreferenceNikanjam, M., Gibbs, A.R., Hunt, C.A., Budinger, T.F. & Forte, T.M. Synthetic nano‐LDL with paclitaxel oleate as a targeted drug delivery vehicle for glioblastoma multiforme. J. Control. Release 124, 163 – 171 ( 2007 ).en_US
dc.identifier.citedreferenceSteiniger, S.C. Chemotherapy of glioblastoma in rats using doxorubicin‐loaded nanoparticles. Int. J. Cancer 109, 759 – 767 ( 2004 ).en_US
dc.identifier.citedreferenceCahan, M.A., Walter, K.A., Colvin, O.M. & Brem, H. Cytotoxicity of taxol in vitro against human and rat malignant brain tumors. Cancer Chemother. Pharmacol. 33, 441 – 444 ( 1994 ).en_US
dc.identifier.citedreferenceChavanpatil, M.D. Surfactant‐polymer nanoparticles overcome P‐glycoprotein‐mediated drug efflux. Mol. Pharm. 4, 730 – 738 ( 2007 ).en_US
dc.identifier.citedreferenceSoma, C.E., Dubernet, C., Bentolila, D., Benita, S. & Couvreur, P. Reversion of multidrug resistance by co‐encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials 21, 1 – 7 ( 2000 ).en_US
dc.identifier.citedreferenceLu, W., Sun, Q., Wan, J., She, Z. & Jiang, X.G. Cationic albumin‐conjugated pegylated nanoparticles allow gene delivery into brain tumors via intravenous administration. Cancer Res. 66, 11878 – 11887 ( 2006 ).en_US
dc.identifier.citedreferenceMaier‐Hauff, K. Intracranial thermotherapy using magnetic nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J. Neurooncol. 81, 53 – 60 ( 2007 ).en_US
dc.identifier.citedreferenceJordan, A. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neurooncol. 78, 7 – 14 ( 2006 ).en_US
dc.identifier.citedreferenceStylli, S.S., Howes, M., MacGregor, L., Rajendra, P. & Kaye, A.H. Photodynamic therapy of brain tumours: evaluation of porphyrin uptake versus clinical outcome. J. Clin. Neurosci. 11, 584 – 596 ( 2004 ).en_US
dc.identifier.citedreferenceVijayaraghavalu, S., Raghavan, D. & Labhasetwar, V. Nanoparticles for delivery of chemotherapeutic agents to tumors. Curr. Opin. Investig. Drugs 8, 477 – 484 ( 2007 ).en_US
dc.identifier.citedreferenceOwens, D.E. 3rd. & Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93 – 102 ( 2006 ).en_US
dc.identifier.citedreferenceMontet, X., Funovics, M., Montet‐Abou, K., Weissleder, R. & Josephson, L. Multivalent effects of RGD peptides obtained by nanoparticle display. J. Med. Chem. 49, 6087 – 6093 ( 2006 ).en_US
dc.identifier.citedreferenceReddy, G.R. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin. Cancer Res. 12, 6677 – 6686 ( 2006 ).en_US
dc.identifier.citedreferenceSun, C. In vivo MRI detection of gliomas by chlorotoxin‐conjugated superparamagnetic nanoprobes. Small 4, 372 – 379 ( 2008 ).en_US
dc.identifier.citedreferenceMadhankumar, A.B., Slagle‐Webb, B., Mintz, A., Sheehan, J.M. & Connor, J.R. Interleukin‐13 receptor‐targeted nanovesicles are a potential therapy for glioblastoma multiforme. Mol. Cancer Ther. 5, 3162 – 3169 ( 2006 ).en_US
dc.identifier.citedreferenceDhanikula, R.S., Argaw, A., Bouchard, J.F. & Hildgen, P. Methotrexate loaded polyether‐copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Mol. Pharm. 5, 105 – 116 ( 2008 ).en_US
dc.identifier.citedreferenceTsutsui, Y. Development of bionanocapsules targeting brain tumors. J. Control. Release 122, 159 – 164 ( 2007 ).en_US
dc.identifier.citedreferenceChertok, B. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487 – 496 ( 2008 ).en_US
dc.identifier.citedreferenceMaeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor‐selective macromolecular drug targeting. Adv. Enzyme Regul. 41, 189 – 207 ( 2001 ).en_US
dc.identifier.citedreferenceMoffat, B.A. A novel polyacrylamide magnetic nanoparticle contrast agent for molecular imaging using MRI. Mol. Imaging 2, 324 – 332 ( 2003 ).en_US
dc.identifier.citedreferencePeira, E., Marzola, P., Podio, V., Aime, S., Sbarbati, A. & Gasco, M.R. In vitro and in vivo study of solid lipid nanoparticles loaded with superparamagnetic iron oxide. J. Drug Target. 11, 19 – 24 ( 2003 ).en_US
dc.identifier.citedreferenceNeuwelt, E.A. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study. Neurosurgery 60, 601 – 611; discussion 611–612 ( 2007 ).en_US
dc.identifier.citedreferenceVarallyay, P. Comparison of two superparamagnetic viral‐sized iron oxide particles ferumoxides and ferumoxtran‐10 with a gadolinium chelate in imaging intracranial tumors. AJNR Am. J. Neuroradiol. 23, 510 – 519 ( 2002 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.