Show simple item record

Comparison of Antidepressant‐Like and Abuse‐Related Effects of Phencyclidine in Rats

dc.contributor.authorHillhouse, Todd M.en_US
dc.contributor.authorPorter, Joseph H.en_US
dc.contributor.authorNegus, S. Stevensen_US
dc.date.accessioned2015-01-07T15:23:17Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2015-01-07T15:23:17Z
dc.date.issued2014-12en_US
dc.identifier.citationHillhouse, Todd M.; Porter, Joseph H.; Negus, S. Stevens (2014). "Comparison of Antidepressant‐Like and Abuse‐Related Effects of Phencyclidine in Rats." Drug Development Research (8): 479-488.en_US
dc.identifier.issn0272-4391en_US
dc.identifier.issn1098-2299en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109848
dc.description.abstractPreclinical Research N ‐methyl‐D‐aspartate ( NMDA ) receptor antagonists, such as ketamine, have emerged as novel candidate treatments for major depressive disorder, but abuse potential of these agents is a concern. The NMDA antagonist phencyclidine has known abuse liability but undefined efficacy as an antidepressant. To further evaluate the relationship between antidepressant‐like and abuse‐related effects of NMDA antagonists, this study evaluated the effects of phencyclidine (1.0–10.0 mg/kg) in male S prague‐ D awley rats responding under two procedures that have been used to assess antidepressant‐like effects (differential‐reinforcement‐of‐low‐rate [ DRL ] 72 s schedule of food reinforcement; n  = 9) and abuse‐related drug effects (intracranial self‐stimulation [ ICSS ]; n  = 6). Under the DRL 72 s schedule, phencyclidine (10.0 mg/kg) increased reinforcers and decreased responses without shifting the peak location of the interresponse time ( IRT ) distribution. Ketamine (10.0 mg/kg) also increased reinforcers and decreased responses, but unlike phencyclidine, it produced a rightward shift in the peak location of the IRT distribution. The 10.0 mg/kg phencyclidine dose that decreased DRL 72 s responding also decreased rates of ICSS for 50 min after its administration; however, abuse‐related ICSS facilitation was observed at later times (100–300 min) or after a lower phencyclidine dose (3.2 mg/kg). These results suggest that phencyclidine produces weaker antidepressant‐like effects, but stronger abuse‐related effects than ketamine in these procedures.en_US
dc.publisherNational Research Councilen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPhencyclidineen_US
dc.subject.otherDepressionen_US
dc.subject.otherAbuse Liabilityen_US
dc.subject.otherIntracranial Self‐Stimulationen_US
dc.subject.otherDifferential‐Reinforcement‐Of‐Low‐Rate ( DRL )en_US
dc.subject.otherKetamineen_US
dc.titleComparison of Antidepressant‐Like and Abuse‐Related Effects of Phencyclidine in Ratsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109848/1/ddr21228.pdf
dc.identifier.doi10.1002/ddr.21228en_US
dc.identifier.sourceDrug Development Researchen_US
dc.identifier.citedreferenceRisner ME. 1982. Intravenous self‐administration of phencyclidine and related compounds in the dog. J Pharmacol Exp Ther 221: 637 – 644.en_US
dc.identifier.citedreferenceNewman JL, Perry JL, Carroll ME. 2008. Effects of altering reinforcer magnitude and reinforcement schedule on phencyclidine (PCP) self‐administration in monkeys using an adjusting delay task. Pharmacol Biochem Behav 90: 778 – 786.en_US
dc.identifier.citedreferenceNicholson KL, Mansbach RS, Menniti FS, Balster RL. 2007. The phencyclidine‐like discriminative stimulus effects and reinforcing properties of the NR2B‐selective N‐methyl‐D‐aspartate antagonist CP‐101 606 in rats and rhesus monkeys. Behav Pharmacol 18: 731 – 743.en_US
dc.identifier.citedreferenceO'Donnell J, Seiden L. 1982. Effects of monoamine oxidase inhibitors on performance during differential reinforcement of low response rate. Psychopharmacology (Berl) 78: 214 – 218.en_US
dc.identifier.citedreferenceO'Donnell JM, Seiden LS. 1983. Differential‐reinforcement‐of‐low‐rate 72 s schedule: selective effects of antidepressant drugs. J Pharmacol Biochem Behav 224: 80 – 88.en_US
dc.identifier.citedreferenceO'Donnell JM, Marek GJ, Seiden LS. 2005. Antidepressant effects assessed using behavior maintained under a differential‐reinforcement‐of‐low‐rate (DRL) operant schedule. Neurosci Biobehav Rev 29: 785 – 798.en_US
dc.identifier.citedreferenceOlthuis JV, Darredeau C, Barrett SP. 2013. Substance use initiation: the role of simultaneous polysubstance use. Drug Alcohol Rev 32: 67 – 71.en_US
dc.identifier.citedreferencePereira Do Carmo G, Stevenson GW, Carlezon WA, Negus SS. 2009. Effects of pain‐ and analgesia‐related manipulations on intracranial self‐stimulation in rats: further studies on pain‐depressed behavior. Pain 144: 170 – 177.en_US
dc.identifier.citedreferencePreskorn SH, Baker B, Kolluri S, Menniti FS, Krams M, Landen JW. 2008. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N‐Methyl‐D‐Aspartate antagonist, CP‐101,606, in patients with treatment‐refractory major depressive disorder. J Clin Psychopharmacol 28: 631 – 637.en_US
dc.identifier.citedreferenceRéus GZ, Stringari RB, Kirsch TR, Fries GR, Kapczinski F, Roesler R, Quevedo J. 2010. Neurochemical and behavioural effects of acute and chronic memantine administration in rats: further support for NMDA as a new pharmacological target for the treatment of depression? Brain Res Bull 81: 585 – 589.en_US
dc.identifier.citedreferenceRichards JB, Sabol KE, Seiden LS. 1993. DRL interresponse‐time distributions: quantification by peak deviation analysis. J Exp Anal Behav 60: 361 – 385.en_US
dc.identifier.citedreferenceSchaefer G, Michael R. 1990. Interactions of naloxone with morphine, amphetamine and phencyclidine on fixed interval responding for intracranial self‐stimulation in rats. Psychopharmacology (Berl) 102: 263 – 268.en_US
dc.identifier.citedreferenceSegal SA, Moerschbaecher JM, Thompson DM. 1981. Effects of phencyclidine, d‐amphetamine and pentobarbital on schedule‐controlled behavior in rats. Pharmacol Biochem Behav 15: 807 – 812.en_US
dc.identifier.citedreferenceShek DTL. 2007. Tackling adolescent substance abuse in Hong Kong: where we should and should not go. Sci World J 7: 2021 – 2030.en_US
dc.identifier.citedreferenceSokolowski JD, Seiden LS. 1999. The behavioral effects of sertraline, fluoxetine, and paroxetine differ on the differential‐reinforcement‐of‐low‐rate 72 s operant schedule in the rat. Psychopharmacology (Berl) 147: 153 – 161.en_US
dc.identifier.citedreferenceSpielewoy C, Markou A. 2003. Withdrawal from chronic phencyclidine treatment induces long‐lasting depression in brain reward function. Neuropsychopharmacology 28: 1106 – 1116.en_US
dc.identifier.citedreferenceSubstance Abuse and Mental Health Services Administration. 2013. Results from the 2012 National Survey on Drug Use and Health: summary of national findings, NSDUH Series H‐46, HHS Publication No. (SMA) 13–4795. Rockville, MD, Substance Abuse and Mental Health Services Administration.en_US
dc.identifier.citedreferenceTurgeon SM, Lin T, Subramanian M. 2007. Subchronic phencyclidine exposure potentiates the behavioral and c‐Fos response to stressful stimuli in rats. Pharmacol Biochem Behav 88: 73 – 81.en_US
dc.identifier.citedreferencevan Hest A, van Drimmelen M, Olivier B. 1992. Flesinoxan shows antidepressant activity in a DRL 72 s screen. Psychopharmacology (Berl) 107: 474 – 479.en_US
dc.identifier.citedreferenceWagner G, Masters D, Tomie A. 1984. Effects of phencyclidine, haloperidol, and naloxone on fixed‐interval performance in rats. Psychopharmacology (Berl) 84: 32 – 38.en_US
dc.identifier.citedreferenceWenger GR, Dews PB. 1976. The effects of phencyclidine, ketamine, delta‐amphetamine and pentobarbital on schedule‐controlled behavior in the mouse. J Pharmacol Exp Ther 196: 616 – 624.en_US
dc.identifier.citedreferenceWise RA. 1996. Addictive drugs and brain stimulation reward. Ann Rev Neurosci 19: 319 – 340.en_US
dc.identifier.citedreferenceWise RA, Bauco P, Carlezon WA Jr, Trojniar W. 1992. Self‐stimulation and drug reward mechanisms. Ann N Y Acad Sci 654: 192 – 198.en_US
dc.identifier.citedreferenceZarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. 2006. A randomized trial of an n‐methyl‐d‐aspartate antagonist in treatment‐resistant major depression. Arch Gen Psychiatry 63: 856 – 864.en_US
dc.identifier.citedreferenceZarate CA Jr, Mathews D, Ibrahim L, Chaves JF, Marquardt C, Ukoh I, Jolkovsky L, Brutsche NE, Smith MA, Luckenbaugh DA. 2013. A randomized trial of a low‐trapping nonselective N‐Methyl‐D‐Aspartate channel blocker in major depression. Biol Psychiatry 74: 257 – 264.en_US
dc.identifier.citedreferenceAltarifi AA, Miller LL, Negus SS. 2012. Role of µ‐opioid receptor reserve and µ‐agonist efficacy as determinants of the effects of µ‐agonists on intracranial self‐stimulation in rats. Behavioural pharmacology 23: 678 – 692.en_US
dc.identifier.citedreferenceArdayfio PA, Benvenga MJ, Chaney SF, Love PL, Catlow J, Swanson SP, Marek GJ. 2008. The 5‐Hydroxytryptamine2A receptor antagonist R‐(+)‐α‐(2,3‐Dimethoxyphenyl)‐1‐[2‐(4‐fluorophenyl)ethyl‐4‐piperidinemethanol (M100907) attenuates impulsivity after both drug‐induced disruption (dizocilpine) and ehancement (antidepressant drugs) of differential‐reinforcement‐of‐low‐rate 72 s behavior in the rat. J Pharmacol Exp Ther 327: 891 – 897.en_US
dc.identifier.citedreferenceAutry AE, Adachi M, Nosyreva E, Na ES, Los MF, Peng‐fei C, Kavalali ET, Monteggia LM. 2011. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475: 91 – 95.en_US
dc.identifier.citedreferenceBauer CT, Banks ML, Blough BE, Negus SS. 2013a. Rate‐dependent effects of monoamine releasers on intracranial self‐stimulation in rats: implications for abuse liability assessment. Behav Pharmacol 24: 448 – 458.en_US
dc.identifier.citedreferenceBeardsley PM, Hayes BA, Balster RL. 1990. The self‐administration of MK‐801 can depend upon drug‐reinforcement history, and its discriminative stimulus properties are phencyclidine‐like in rhesus monkeys. J Pharmacol Exp Ther 252: 953 – 959.en_US
dc.identifier.citedreferenceBerman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. 2000. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47: 351 – 354.en_US
dc.identifier.citedreferenceBrady KT, Balster RL, Meltzer LT, Schwertz D. 1980. Comparison of phencyclidine and three analogues on fixed‐interval performance in rhesus monkeys. Pharmacol Biochem Behav 12: 67 – 71.en_US
dc.identifier.citedreferenceBresink I, Danysz W, Parsons CG, Mutschler E. 1995. Different binding affinities of NMDA receptor channel blockers in various brain regions—Indication of NMDA receptor heterogeneity. Neuropharmacology 34: 533 – 540.en_US
dc.identifier.citedreferenceByrd LD. 1982. Comparison of the behavioral effects of phencyclidine, ketamine, d‐amphetamine and morphine in the squirrel monkey. J Pharmacol Exp Ther 220: 139 – 144.en_US
dc.identifier.citedreferenceCarlezon WA Jr, Chartoff EH. 2007. Intracranial self‐stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2: 2987 – 2995.en_US
dc.identifier.citedreferenceCarlezon WA Jr, Wise RA. 1993. Phencyclidine‐induced potentiation of brain stimulation reward: acute effects are not altered by repeated administration. Psychopharmacology (Berl) 111: 402 – 408.en_US
dc.identifier.citedreferenceCarlezon WA Jr, Wise RA. 1996. Rewarding actions of phencyclidine and related Drugs in nucleus accumbens shell and frontal cortex. J Neurosci 16: 3112 – 3122.en_US
dc.identifier.citedreferenceCarroll ME, Carmona GN, Rodefer JS. 1994. Phencyclidine (PCP) self‐administration and withdrawal in rhesus monkeys: effects of buprenorphine and dizocilpine (MK‐801) pretreatment. Pharmacol Biochem Behav 48: 723 – 732.en_US
dc.identifier.citedreferenceCarroll ME, Cosgrove KP, Campbell UC, Morgan AD, Mickelberg JL. 2000. Reductions in ethanol, phencyclidine, and food‐maintained behavior by naltrexone pretreatment in monkeys is enhanced by open economic conditions. Psychopharmacology (Berl) 148: 412 – 422.en_US
dc.identifier.citedreferenceCollins RJ, Weeks J, Cooper M, Good P, Russell R. 1983. Prediction of abuse liability of drugs using IV self‐administration by rats. Psychopharmacology (Berl) 82: 6 – 13.en_US
dc.identifier.citedreferenceEngin E, Treit D, Dickson CT. 2009. Anxiolytic‐ and antidepressant‐like properties of ketamine in behavioral and neurophysiological animal models. Neurosci 161: 359 – 369.en_US
dc.identifier.citedreferenceGigliucci V, O'Dowd G, Casey S, Egan D, Gibney S, Harkin A. 2013. Ketamine elicits sustained antidepressant‐like activity via a serotonin‐dependent mechanism. Psychopharmacology (Berl) 228: 157 – 166.en_US
dc.identifier.citedreferenceHillhouse TM, Porter JH. 2014. Ketamine, but not MK‐801, produces antidepressant‐like effects in rats responding on a differential‐reinforcement‐of‐low‐rate operant schedule. Behav Pharmacol 25: 80 – 91.en_US
dc.identifier.citedreferenceHillhouse TM, Porter JH, Negus SS. 2014. Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK‐801 on intracranial self‐stimulation in rats. Psychopharmacology (Berl) 231: 2705 – 2716.en_US
dc.identifier.citedreferenceInstitute of Laboratory Animal Resources. 2011. Guide for the care and use of laboratory animals, 8th ed. Institute of Laboratory Animals Resources, Commission of Life Sciences. Washington, DC: National Research Council.en_US
dc.identifier.citedreferenceKoike H, Iijima M, Chaki S. 2011. Involvement of AMPA receptor in both the rapid and sustained antidepressant‐like effects of ketamine in animal models of depression. Behav Brain Res 224: 107 – 111.en_US
dc.identifier.citedreferenceKornetsky C, Esposito RU, McLean S, Jacobson JO. 1979. Intracranial self‐stimulation thresholds: a model for the hedonic effects of drugs of abuse. Arch General Psychiatry 36: 289 – 292.en_US
dc.identifier.citedreferenceLi N, Lee B, Liu R‐J, Banasr M, Dwyer JM, Iwata M, Li X‐Y, Aghajanian G, Duman RS. 2010. mTOR‐dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329: 959 – 964.en_US
dc.identifier.citedreferenceMaeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK. 2008. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α‐Amino‐3‐Hydroxy‐5‐Methylisoxazole‐4‐Propionic acid receptors. Biol Psychiatry 63: 349 – 352.en_US
dc.identifier.citedreferenceMarquis K, Webb M, Moreton JE. 1989. Effects of fixed ratio size and dose on phencyclidine self‐administration by rats. Psychopharmacology (Berl) 97: 179 – 182.en_US
dc.identifier.citedreferenceMarquis KL, Moreton JE. 1987. Animal models of intravenous phencyclinoid self‐administration. Pharmacol Biochem Behav 27: 385 – 389.en_US
dc.identifier.citedreferenceMcCambridge J, Winstock A, Hunt N, Mitcheson L. 2007. 5‐Year trends in use of hallucinogens and other adjunct drugs among UK dance drug users. Eur Addict Res 13: 57 – 64.en_US
dc.identifier.citedreferenceMoryl E, Danysz W, Quack G. 1993. Potential antidepressive properties of amantadine, memantine and bifemelane. Pharmacol Toxicol 72: 394 – 397.en_US
dc.identifier.citedreferenceMurrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, et al. 2013a. Antidepressant efficacy of ketamine in treatment‐resistant major depression: a two‐site randomized controlled trial. Am J Psychiatry 170: 1134 – 1142.en_US
dc.identifier.citedreferenceMurrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Collins KA, Mathew SJ, Charney DS, Iosifescu DV. 2013b. Rapid and longer‐term antidepressant effects of repeated ketamine infusions in treatment‐resistant major depression. Biol Psychiatry 74: 250 – 256.en_US
dc.identifier.citedreferenceNegus SS, Miller LL. 2014. Intracranial self‐stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66: 869 – 917.en_US
dc.identifier.citedreferenceNewman JL, Perry JL, Carroll ME. 2007. Social stimuli enhance phencyclidine (PCP) self‐administration in rhesus monkeys. Pharmacol Biochem Behav 87: 280 – 288.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.