Show simple item record

Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway

dc.contributor.authorHorn, James W.en_US
dc.contributor.authorXi, Zhenxiangen_US
dc.contributor.authorRiina, Ricardaen_US
dc.contributor.authorPeirson, Jess A.en_US
dc.contributor.authorYang, Yaen_US
dc.contributor.authorDorsey, Brian L.en_US
dc.contributor.authorBerry, Paul E.en_US
dc.contributor.authorDavis, Charles C.en_US
dc.contributor.authorWurdack, Kenneth J.en_US
dc.date.accessioned2015-01-07T15:24:01Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2015-01-07T15:24:01Z
dc.date.issued2014-12en_US
dc.identifier.citationHorn, James W.; Xi, Zhenxiang; Riina, Ricarda; Peirson, Jess A.; Yang, Ya; Dorsey, Brian L.; Berry, Paul E.; Davis, Charles C.; Wurdack, Kenneth J. (2014). "Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway." Evolution 68(12): 3485-3504.en_US
dc.identifier.issn0014-3820en_US
dc.identifier.issn1558-5646en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109954
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSpringer Verlagen_US
dc.subject.otherSpecies Selectionen_US
dc.subject.otherSucculenten_US
dc.subject.otherDiversificationen_US
dc.subject.otherMioceneen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherCAM Photosynthesisen_US
dc.subject.otherC 4 Photosynthesisen_US
dc.subject.otherAncestral State Reconstructionen_US
dc.titleEvolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathwayen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109954/1/evo12534.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109954/2/evo12534-sup-0001-SuppMAT.pdf
dc.identifier.doi10.1111/evo.12534en_US
dc.identifier.sourceEvolutionen_US
dc.identifier.citedreferenceSantini, F., L. J. Harmon, G. Carnevale, and M. E. Alfaro. 2009. Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray‐finned fishes. BMC Evol. Biol. 9: 194. doi: 10.1186/1471-2148-9-194en_US
dc.identifier.citedreferenceSlater, G. J., S. A. Price, F. Santini, and M. E. Alfaro. 2010. Diversity versus disparity and the radiation of modern cetaceans. Proc. R. Soc. Lond. B 277: 3097 – 3104.en_US
dc.identifier.citedreferenceSmith, J. A. C., and K. Winter. 1996. Taxonomic distribution of crassulacean acid metabolism. Pp. 427–436 in K. Winter and J. A. C. Smith, eds. Crassulacean acid metabolism: biochemistry, ecophysiology and evolution. Springer, New York, NY.en_US
dc.identifier.citedreferenceSmith, S. A., J. M. Beaulieu, A. Stamatakis, and M. J. Donoghue. 2011. Understanding angiosperm diversification using small and large phylogenetic trees. Am. J. Bot. 98: 404 – 414.en_US
dc.identifier.citedreferenceSpriggs, E. L., P. ‐A. Christin, and E. J. Edwards. 2014. C 4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS ONE 9: e97722. doi: 10.1371/journal.pone.0097722en_US
dc.identifier.citedreferenceStadler, T. 2009. On incomplete sampling under birth‐death models and connections to the sampling‐based coalescent. J. Theor. Biol. 261: 58 – 66.en_US
dc.identifier.citedreferenceSteinmann, V. W., and J. M. Porter. 2002. Phylogenetic relationships in Euphorbieae (Euphorbiaceae) based on ITS and ndhF sequence data. Ann. Mo. Bot. Gard. 89: 453 – 490.en_US
dc.identifier.citedreferenceSuc, J.‐P. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307: 429 – 432.en_US
dc.identifier.citedreferenceSuzuki, N., and S. Teranishi. 2005. Phenology and life cycle of the annual Chamaesyce maculata (L.) Small (Euphorbiaceae), with multiple overlapping generations in Japan. Ecol. Res. 20: 425 – 432.en_US
dc.identifier.citedreferenceTripati, A. K., C. D. Roberts, and R. A. Eagle. 2009. Coupling of CO 2 and ice sheet stability over major climate transitions of the last 20 million years. Science 326: 1394 – 1397.en_US
dc.identifier.citedreferenceValente, L. M., A. W. Britton, M. P. Powell, A. S. T. Papadopulos, P. M. Burgoyne, and V. Savolainen. 2014. Correlates of hyperdiversity in southern African ice plants (Aizoaceae). Bot. J. Linn. Soc. 174: 110 – 129.en_US
dc.identifier.citedreferenceVamosi, J. C., and S. M. Vamosi. 2011. Factors influencing diversification in angiosperms: at the crossroads of intrinsic and extrinsic traits. Am. J. Bot. 98: 460 – 471.en_US
dc.identifier.citedreferencevan Ee, B. W., P. E. Berry, R. Riina, and J. E. G. Amaro. 2008. Molecular phylogenetics and biogeography of the Caribbean‐centered Croton subgenus Moacroton (Euphorbiaceae s.s.). Bot. Rev. 74: 132 – 165.en_US
dc.identifier.citedreferenceVerboom, A., J. K. Archibald, F. T. Bakker, D. U. Bellstedt, F. Conrad, L. L. Dreyer, F. Forest, C. Galley, P. Goldblatt, J. F. Henning, et al. 2009. Origin and diversification of the Greater Cape flora: ancient species repository, hot‐bed of recent radiation, or both? Mol. Phylogenet. Evol. 51: 44 – 53.en_US
dc.identifier.citedreferenceVrba, E. S. 1984. What is species selection? Syst. Zool. 33: 318 – 328.en_US
dc.identifier.citedreferenceWebster, G. L. 1967. The genera of Euphorbiaceae in the southeastern United States. J. Arnold Arb. 48: 303 – 361, 363–430.en_US
dc.identifier.citedreferenceWebster, G. L., W. V. Brown, and B. N. Smith. 1975. Systematics of photosynthetic carbon fixation pathways in Euphorbia. Taxon 24: 27 – 33.en_US
dc.identifier.citedreferenceWells, N. A. 2003. Some hypotheses on the Mesozoic and Cenozoic paleoenvironmental history of Madagascar. Pp. 16 – 34 in S. M. Goodman and J. P. Benstead, eds. The natural history of Madagascar. Univ. of Chicago Press, Chicago, IL.en_US
dc.identifier.citedreferenceWest‐Eberhard, M. J. 2003. Developmental plasticity and evolution. Oxford Univ. Press, New York, NY.en_US
dc.identifier.citedreferenceWinter, K. 1979. δ 13 C values of some succulent plants from Madagascar. Oecologia 40: 103 – 112.en_US
dc.identifier.citedreferenceWinter, K., and J. A. M. Holtum. 2002. How closely do the δ 13 C values of CAM plants reflect the proportion of CO 2 fixed during day and night? Plant Physiol. 129: 1843 – 1851.en_US
dc.identifier.citedreference———. 2011. Induction and reversal of crassulacean acid metabolism in Calandrinia polyandra: effects of soil moisture and nutrients. Funct. Plant Biol. 38: 576 – 582.en_US
dc.identifier.citedreferenceWinter, K., J. Aranda, and J. A. M. Holtum. 2005. Carbon isotope composition and water‐use efficiency in plants with crassulacean acid metabolism. Funct. Plant Biol. 32: 381 – 388.en_US
dc.identifier.citedreferenceWinter, K., M. Garcia, and J. A. M Holtum. 2008. On the nature of facultative and constitutive CAM: environmental and developmental control of CAM expression during early growth of Clusia, Kalanchoë, and Opuntia. J. Exp. Bot. 59: 1829 – 1840.en_US
dc.identifier.citedreferenceXi, Z., B. R. Rhufel, H. Schaefer, A. M. Amorim, M. Sugumaran, K. J. Wurdack, P. K. Endress, M. L. Mathews, P. F. Stevens, S. Mathews, et al. 2012. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl. Acad. Sci. USA 109: 17519 – 17524.en_US
dc.identifier.citedreferenceYang, Y., and P. E. Berry. 2011. Phylogenetics of the Chamaesyce clade ( Euphorbia, Euphorbiaceae): reticulate evolution and long‐distance dispersal in a prominent C 4 lineage. Am. J. Bot. 98: 1486 – 1503.en_US
dc.identifier.citedreferenceYang, Y., R. Riina, J. J. Morawetz, T. Haevermans, X. Aubriot, and P. E. Berry. 2012. Molecular phylogenetics and classification of Euphorbia subgenus Chamaesyce (Euphorbiaceae). Taxon 61: 764 – 789.en_US
dc.identifier.citedreferenceYoder, J. B., E. Clancey, S. Des Roches, J. M. Eastman, L. Gentry, W. Godsoe, T. J. Hagey, D. Jochimsen, B. P. Oswald, J. Robertson, et al. 2010. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23: 1581 – 1596.en_US
dc.identifier.citedreferenceZachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686 – 693.en_US
dc.identifier.citedreferenceZimmermann, N. F. A., C. M. Ritz, and F. H. Hellwig. 2010. Further support for the phylogenetic relationships within Euphorbia L. (Euphorbiaceae) from nrITS and trnL–trnF IGS sequence data. Plant Syst. Evol. 286: 39 – 58.en_US
dc.identifier.citedreferenceZwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas at Austin, Austin, TX. Available at https://www.nescent.org/wg_garli/Main_Pageen_US
dc.identifier.citedreferenceAckerly, D. D. 2009. Evolution, origin and age of lineages in the Californian and Mediterranean floras. J. Biogeogr. 36: 1221 – 1233.en_US
dc.identifier.citedreferenceAkaike, H. 1974. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19: 716 – 723.en_US
dc.identifier.citedreferenceAlfaro, M. E., F. Santini, C. Brock, H. Alamillo, A. Dornburg, D. L. Rabosky, G. Carnevale, and L. J. Harmon. 2009. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Natl. Acad. Sci. USA 106: 13410 – 13414.en_US
dc.identifier.citedreferenceAlvarado‐Cárdenas, L. O., E. Martínez‐Meyer, T. P. Feria, L. E. Eguiarte, H. M. Hernández, G. Midgley, and M. E. Olson. 2013. To converge or not to converge in environmental space: testing for similar environments between analogous succulent plants of North America and Africa. Ann. Bot. 111: 1125 – 1138.en_US
dc.identifier.citedreferenceAnderson, C. J., A. Channing, and A. B. Zamuner. 2009. Life, death and fossilization on Gran Canaria—implications for Macaronesian biogeography and molecular dating. J. Biogeogr. 36: 2189 – 2201.en_US
dc.identifier.citedreferenceArakaki, M., P.‐A. Christin, R. Nyffeler, A. Lendel, U. Eggli, R. M. Ogburn, E. Spriggs, M. J. Moore, and E. J. Edwards. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proc. Natl. Acad. Sci. USA 108: 8379 – 8384.en_US
dc.identifier.citedreferenceBaldwin, B. G., and M. J. Sanderson. 1998. Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc. Natl. Acad. Sci. USA 95: 9402 – 9406.en_US
dc.identifier.citedreferenceBeaulieu, J. M., and M. J. Donoghue. 2013. Fruit evolution and diversification in campanulid angiosperms. Evolution 67: 3132 – 3144.en_US
dc.identifier.citedreferenceBeerling, D. J., and D. L. Royer. 2011. Convergent Cenozoic CO 2 history. Nat. Geosci. 4: 418 – 420.en_US
dc.identifier.citedreferenceBender, M. M. 1971. Variations in the 13 C/ 12 C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10: 1239 – 1244.en_US
dc.identifier.citedreferenceBender, M. M., I. Rouhani, H. M. Vines, and C. C. Black Jr. 1973. 13 C/ 12 C ratio changes in crassulacean acid metabolism plants. Plant Physiol. 52: 427 – 430.en_US
dc.identifier.citedreferenceBorland, A. M., V. A. Barrera Zambrano, J. Ceusters, and K. Shorrock. 2011. The photosynthetic plasticity of crassulacean acid metabolism: an evolutionary innovation for sustainable productivity in a changing world. New Phytol. 191: 619 – 633.en_US
dc.identifier.citedreferenceBouchenak‐Khelladi, Y., J. A. Slingsby, G. A. Verboom, and W. J. Bond. 2014. Diversification of C 4 grasses (Poaceae) does not coincide with their ecological dominance. Am. J. Bot. 101: 300 – 307.en_US
dc.identifier.citedreferenceBruyns, P. V., C. Klak, and P. Hanáček. 2011. Age and diversity in Old World succulent species of Euphorbia (Euphorbiaceae). Taxon 60: 1717 – 1733.en_US
dc.identifier.citedreferenceBurnham, K. P., and D. R. Anderson. 2002. Model selection and inference: a practical information‐theoretic approach. 2nd ed. Springer Verlag, New York, NY.en_US
dc.identifier.citedreferenceBytebier, B., A. Antonelli, D. U. Bellstedt, and H. P. Linder. 2011. Estimating the age of fire in the Cape Flora of South Africa from an orchid phylogeny. Proc. R. Soc. Lond. B 278: 188 – 195.en_US
dc.identifier.citedreferenceCerling, T. E., Y. Wang, and J. Quade. 1993. Expansion of C 4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344 – 345.en_US
dc.identifier.citedreferenceCerling, T. E., J. M. Harris, B. J. MacFadden, M. G. Leakey, J. Quade, V. Eisenmann, and J. R. Ehleringer. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389: 153 – 158.en_US
dc.identifier.citedreferenceChristin, P.‐A., C. P. Osborne, R. F. Sage, M. Arakaki, and E. J. Edwards. 2011. C 4 eudicots are not younger than C 4 monocots. J. Exp. Bot. 62: 3171 – 3181.en_US
dc.identifier.citedreferenceGould, S. J. 2002. The structure of evolutionary theory. Belknap Press, Cambridge, MA.en_US
dc.identifier.citedreferenceChristin, P.‐A., M. Arakaki, C. P. Osborne, A. Bräutigam, R. F. Sage, J. M. Hibberd, S. Kelly, S. Covshoff, G. Ka‐Shu Wong, L. Hancock, et al. 2014a. Shared origins of a key enzyme during the evolution of C 4 and CAM metabolism. J. Exp. Bot. 65: 3609 – 3621.en_US
dc.identifier.citedreferenceChristin, P.‐A., E. Spriggs, C. P. Osborne, C. A. E. Strömberg, N. Salamin, and E. J. Edwards. 2014b. Molecular dating, evolutionary rates, and the age of the grasses. Syst. Biol. 63: 153 – 165.en_US
dc.identifier.citedreferenceCrayn, D. M., K. Winter, and A. C. Smith. 2004. Multiple origins of crassulacean acid metabolism and the epiphytic habit in the Neotropical family Bromeliaceae. Proc. Natl. Acad. Sci. USA 101: 3703 – 3708.en_US
dc.identifier.citedreferenceCrepet, W. L., and C. P. Daghlian. 1982. Euphorbioid inflorescences from the Middle Eocene Clairborne formation. Am. J. Bot. 69: 258 – 266.en_US
dc.identifier.citedreferenceCushman, J. C. 2001. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 127: 1439 – 1448.en_US
dc.identifier.citedreferenceDavis, M. B., R. G. Shaw, and J. R. Etterson. 2005. Evolutionary responses to changing climate. Ecology 86: 1704 – 1714.en_US
dc.identifier.citedreferencede Queiroz, A. 2002. Contingent predictability in evolution: key traits and diversification. Syst. Biol. 51: 917 – 929.en_US
dc.identifier.citedreferenceDodd, A. N., A. M. Borland, R. P. Haslam, H. Griffiths, and K. Maxwell. 2002. Crassulacean acid metabolism: plastic, fantastic. J. Exp. Bot. 53: 569 – 580.en_US
dc.identifier.citedreferenceDonoghue, M. J. 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31: 77 – 93.en_US
dc.identifier.citedreferenceDorsey, B. L. 2013. Phylogenetics and morphological evolution of Euphorbia subgenus Euphorbia. Ph.D. dissertation, University of Michigan, Ann Arbor, MI.en_US
dc.identifier.citedreferenceDorsey, B. L., T. Haevermans, X. Aubriot, J. J. Morawetz, R. Riina, V. W. Steinmann, and P. E. Berry. 2013. Phylogenetics, morphological evolution, and classification of Euphorbia subgenus Euphorbia. Taxon 62: 291 – 315.en_US
dc.identifier.citedreferenceDrummond, A. J., S. W. Y. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4: 699 – 710.en_US
dc.identifier.citedreferenceDrummond, A. J., M. A. Suchard, D. Xie, and A. Rambaud. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29: 1969 – 1973.en_US
dc.identifier.citedreferenceDupont, L. M., H. P. Linder, F. Rommerskirchen, and E. Schefuß. 2011. Climate‐driven rampant speciation of the Cape Flora. J. Biogeogr. 38: 1059 – 1068.en_US
dc.identifier.citedreferenceEdwards, E. J., and R. M. Ogburn. 2012. Angiosperm responses to a low‐CO 2 world: CAM and C 4 photosynthesis as parallel evolutionary trajectories. Int. J. Plant Sci. 173: 724 – 733.en_US
dc.identifier.citedreferenceEdwards, E. J., and S. A. Smith. 2010. Phylogenetic analyses reveal the shady history of C 4 grasses. Proc. Natl. Acad. Sci. USA 107: 2532 – 2537.en_US
dc.identifier.citedreferenceEhleringer, J. R., and R. K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24: 411 – 439.en_US
dc.identifier.citedreferenceEronen, J. T., M. Fortelius, A. Micheels, F. T. Portmann, K. Puolamäki, and C. M. Janis. 2012. Neogene aridification of the Northern Hemisphere. Geology 40: 823 – 826.en_US
dc.identifier.citedreferenceEsler, K. J., and N. Phillips. 1994. Experimental effects of water‐stress on semiarid karoo seedlings: implications for field seedling survivorship. J. Arid Environ. 26: 325 – 337.en_US
dc.identifier.citedreferenceEsser, H.‐J., P. E. Berry, and R. Riina. 2009. EuphORBia: a global inventory of the spurges. Blumea 54: 11 – 12.en_US
dc.identifier.citedreferenceEvans, M., X. Aubriot, D. Hearn, M. Lanciaux, S. Lavergne, C. Cruaud, P. P. Lowry, and T. Haevermans. 2014. Insights on the evolution of plant succulence from a remarkable radiation in Madagascar ( Euphorbia ). Syst. Biol. 63: 698 – 711.en_US
dc.identifier.citedreferenceFarquhar, G. D., J. R. Ehleringer, and K. T. Hubick. 1989. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Physiol. 40: 503 – 537.en_US
dc.identifier.citedreferenceFitzJohn, R. G. 2012. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3: 1084 – 1092.en_US
dc.identifier.citedreferenceFitzJohn, R. G., W. P. Maddison, and S. P. Otto. 2009. Estimating trait‐dependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58: 595 – 611.en_US
dc.identifier.citedreferenceFriis, E. M., and W. L. Crepet. 1987. Time and appearance of floral features. Pp. 145 – 180 in E. M. Friis, W. G. Chaloner, and P. R. Crane, eds. The origins of angiosperms and their biological consequences. Cambridge Univ. Press, New York, NY.en_US
dc.identifier.citedreferenceGilpin, M. E., and M. E. Soulé. 1986. Minimum viable populations: processes of species extinction. Pp. 19 – 34 in M. E. Soulé, ed. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA.en_US
dc.identifier.citedreferenceGivnish, T. J., M. H. J. Barfuss, B. Van Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, et al. 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71: 55 – 78.en_US
dc.identifier.citedreferenceGoldberg, E. E., and B. Igić. 2008. On phylogenetic tests of irreversible evolution. Evolution 62: 2727 – 2741.en_US
dc.identifier.citedreferenceGood‐Avila, S. V., V. Souza, B. S. Gaut, and L. E. Eguiarte. 2006. Timing and rate of speciation in Agave (Agavaceae). Proc. Natl. Acad. Sci. USA 103: 9124 – 9129.en_US
dc.identifier.citedreferenceGraham, A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am. J. Bot. 98: 336 – 351.en_US
dc.identifier.citedreferenceGuo, Z., S. Peng, Q. Hao, P. E. Biscayne, Z. An, and T. Liu. 2004. Late Miocene–Pliocene development of Asian aridification as recorded in the Red‐Earth Formation in northern China. Global Planet. Change 41: 135 – 145.en_US
dc.identifier.citedreferenceGutierrez, M., V. E. Gracen, and G. E. Edwards. 1974. Biochemical and cytological relationships in C 4 plants. Planta 119: 279 – 300.en_US
dc.identifier.citedreferenceHernández‐Gonzáles, O., and O. B. Villarreal. 2007. Crassulacean acid metabolism photosynthesis in columnar cactus seedlings during ontogeny: the effect of light on nocturnal acidity accumulation and chlorophyll fluorescence. Am. J. Bot. 94: 1344 – 1351.en_US
dc.identifier.citedreferenceHernández‐Hernández, T., J. W. Brown, B. O. Schlumpberger, L. E. Eguiarte, and S. Magallón. 2014. Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. New Phytol. 202: 1382 – 1397.en_US
dc.identifier.citedreferenceHerrera, A. 2009. Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann. Bot. 103: 645 – 653.en_US
dc.identifier.citedreference———. 2013. Crassulacean acid metabolism‐cycling in Euphorbia milii. AoB Plants 5: plt014. doi: 10.1093/aobpla/plt014en_US
dc.identifier.citedreferenceHorn, J. W., B. W. van Ee, J. J. Morawetz, R. Riina, V. W. Steinmann, P. E. Berry, and K. J. Wurdack. 2012. Phylogenetics and evolution of major structural characters in the giant genus Euphorbia (Euphorbiaceae). Mol. Phylogenet. Evol. 63: 305 – 326.en_US
dc.identifier.citedreferenceJacobs, B. F. 2004. Paleobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos. Trans. R. Soc. Lond. B 359: 1573 – 1583.en_US
dc.identifier.citedreferenceJordan, P. W., and P. S. Nobel. 1979. Infrequent establishment of seedlings of Agave deserti (Agavaceae) in the northwestern Sonoran Desert. Am. J. Bot. 66: 1079 – 1084.en_US
dc.identifier.citedreferenceKadereit, G., D. Ackerly, and M. D. Pirie. 2012. A broader model for C 4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). Proc. R. Soc. Lond. B 279: 3304 – 3311.en_US
dc.identifier.citedreferenceKeeley, J. E., and P. W. Rundell. 2003. Evolution of CAM and C 4 carbon‐concentrating mechanisms. Int. J. Plant Sci. 164: S55 – S77.en_US
dc.identifier.citedreferenceKeeling, C. D., W. G. Mook, and P. P. Tans. 1979. Recent trends in the 13 C/ 12 C ratio of atmospheric carbon dioxide. Nature 277: 121 – 123.en_US
dc.identifier.citedreferenceKlak, C., G. Reeves, and T. Hedderson. 2004. Unmatched tempo of evolution in Southern African semi‐desert ice plants. Nature 427: 63 – 65.en_US
dc.identifier.citedreferenceKluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis for relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38: 7 – 25.en_US
dc.identifier.citedreferenceLanfear, R., B. Calcott, S. Y. W. Ho, and S. Guindon. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695 – 1701.en_US
dc.identifier.citedreferenceLengyel, S., A. D. Grove, A. M. Latimer, J. D. Majer, and R. R. Dunn. 2009. Ants sow the seeds of global diversification in flowering plants. PLoS ONE 5: e5480. doi: 10.1371/journal.pone.0005480en_US
dc.identifier.citedreferenceLewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913 – 925.en_US
dc.identifier.citedreferenceLüttge, U. 2004. Ecophysiology of crassulacean acid metabolism (CAM). Ann. Bot. 93: 629 – 652.en_US
dc.identifier.citedreference———. 2007. Physiological ecology. Pp. 187 – 234 in U. Lüttge, ed. Clusia: a woody Neotropical genus with remarkable plasticity and diversity. Springer‐Verlag, Berlin, Germany.en_US
dc.identifier.citedreferenceMaddison, W. P., and D. R. Maddison. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. Available at http://mesquiteproject.orgen_US
dc.identifier.citedreferenceMaddison, W. P., P. E. Midford, and S. P. Otto. 2007. Estimating a binary character's effect on speciation and extinction. Syst. Biol. 56: 701 – 710.en_US
dc.identifier.citedreferenceMagallón, S., and A. Castillo. 2009. Angiosperm diversification through time. Am. J. Bot. 96: 349 – 365.en_US
dc.identifier.citedreferenceMcWilliams, E. L. 1970. Comparative rates of dark CO 2 uptake and acidification in the Bromeliaceae, Orchidaceae, and Euphorbiaceae. Bot. Gaz. (Lond.) 131: 285 – 290.en_US
dc.identifier.citedreferenceMooney, H. A., J. H. Troughton, and J. A. Berry. 1977. Carbon isotope ratio measurements of succulent plants in southern Africa. Oecologia 30: 295 – 305.en_US
dc.identifier.citedreferenceO'Leary, M. H. 1988. Carbon isotopes in photosynthesis. BioScience 38: 328 – 336.en_US
dc.identifier.citedreferenceOsborne, C. P., and D. J. Beerling. 2006. Nature's green revolution: the remarkable evolutionary rise of C 4 plants. Proc. R. Soc. Lond. B 361: 173 – 194.en_US
dc.identifier.citedreferenceOsborne, C. P., and L. Sack. 2012. Evolution of C 4 plants: a new hypothesis for an interaction of CO 2 and water relations mediated by plant hydraulics. Philos. Trans. R. Soc. Lond. B 367: 583 – 600.en_US
dc.identifier.citedreferencePagani, M., J. C. Zachos, K. H. Freeman, B. Tipple, and S. Bohaty. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309: 600 – 603.en_US
dc.identifier.citedreferencePagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48: 612 – 622.en_US
dc.identifier.citedreferencePartridge, T. C. 1993. The evidence for Cainozoic aridification in southern Africa. Quatern. Int. 17: 105 – 110.en_US
dc.identifier.citedreferencePau, S., E. J. Edwards, and C. J. Still. 2013. Improving our understanding of environmental controls on the distribution of C 3 and C 4 grasses. Glob. Change Biol. 19: 184 – 196.en_US
dc.identifier.citedreferencePearcy, R. W., and J. Troughton. 1975. C 4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiol. 55: 1054 – 1056.en_US
dc.identifier.citedreferencePeirson, J. A., P. V. Bruyns, R. Riina, J. J. Morawetz, and P. E. Berry. 2013. A molecular phylogeny and classification of the largely succulent and mainly African Euphorbia subg. Athymalus (Euphorbiaceae). Taxon 62: 1179 – 1200.en_US
dc.identifier.citedreferencePierce, S., K. Winter, and H. Griffiths. 2002. Carbon isotope ratio and the extent of daily CAM use by Bromeliaceae. New Phytol. 156: 75 – 83.en_US
dc.identifier.citedreferencePittermann, J., S. A. Stuart, T. E. Dawson, and A. Moreau. 2012. Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proc. Natl. Acad. Sci. USA 109: 9647 – 9652.en_US
dc.identifier.citedreferencePound, M. J., A. M. Haywood, U. Salzmann, and J. B. Riding. 2012. Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci. Rev. 112: 1 – 22.en_US
dc.identifier.citedreferencePrenner, G., and P. J. Rudall. 2007. Comparative ontogeny of the cyathium in Euphorbia (Euphorbiaceae) and its allies: exploring the organ‐flower‐inflorescence boundary. Am. J. Bot. 94: 1612 – 1629.en_US
dc.identifier.citedreferenceRabosky, D. L. 2010. Extinction rates should not be estimated from molecular phylogenies. Evolution 64: 1816 – 1824.en_US
dc.identifier.citedreferenceRabosky, D. L., and A. R. McCune. 2010. Reinventing species selection with molecular phylogenies. Trends Ecol. Evol. 25: 68 – 74.en_US
dc.identifier.citedreferenceRabosky, D. L., S. C. Donnellan, A. L. Talaba, and I. J. Lovette. 2007. Exceptional among lineage variation in diversification rates during the radiation of Australia's most diverse vertebrate clade. Proc. R. Soc. Lond. B 274: 2915 – 2923.en_US
dc.identifier.citedreferenceRambaut, A., and M. Charleston. 2002. TreeEdit. Phylogenetic tree editor, ver. 1.0 alpha 10. Available at http://tree.bio.ed.ac.uk/software/treeedit/en_US
dc.identifier.citedreferenceRambaut, A., and A. J. Drummond 2007. Tracer, version 1.5. Univ. of Oxford, Oxford, U.K. Available at http://tree.bio.ed.ac.uk/software/tracer/en_US
dc.identifier.citedreferenceRiina, R., and P. E. Berry (coordinators). 2013. Euphorbia Planetary Biodiversity Inventory Project. Available at www.euphorbiaceae.orgen_US
dc.identifier.citedreferenceRiina, R., J. A. Peirson, D. V. Geltman, J. Molero, B. Frajman, A. Pahlevani, L. Barres, J. J. Morawetz, Y. Salmaki, S. Zarre, et al. 2013. A worldwide molecular phylogeny and classification of the leafy spurges, Euphorbia subgenus Esula (Euphorbiaceae). Taxon 62: 316 – 342.en_US
dc.identifier.citedreferenceRuddiman, W. F., and J. E. Kutzbach. 1989. Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American west. J. Geophys. Res. Atmos. 94: 18409 – 18427.en_US
dc.identifier.citedreferenceSage, R. F. 2002. Are crassulacean acid metabolism and C 4 photosynthesis incompatible ? Funct. Plant Biol. 29: 775 – 785.en_US
dc.identifier.citedreference———. 2004. The evolution of C 4 photosynthesis. New Phytol. 161: 341 – 370.en_US
dc.identifier.citedreferenceSage, R. F., P.‐A. Christin, and E. J. Edwards. 2011a. The C 4 plant lineages of planet Earth. J. Exp. Bot. 62: 3155 – 3169.en_US
dc.identifier.citedreferenceSage, T. L., R. F. Sage, P. J. Vogan, B. Rahman, D. C. Johnson, J. C. Oakley, and M. A. Heckel. 2011b. The occurrence of C 2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). J. Exp. Bot. 62: 3183 – 3195.en_US
dc.identifier.citedreferenceSanderson, M. J. 1997. A non‐parametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14: 1218 – 1231.en_US
dc.identifier.citedreferenceSchluter, D., T. Price, A. O. Mooers, and D. Ludwig. 1997. Likelihood of ancestor states in adaptive radiation. Evolution 51: 1699 – 1711.en_US
dc.identifier.citedreferenceSchwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 6: 461 – 464.en_US
dc.identifier.citedreferenceSepulchre, P., G. Ramstein, F. Fluteau, M. Schuster, J.‐J. Tiercelin, and M. Brunet. 2006. Tectonic uplift and eastern Africa aridification. Science 313: 1419 – 1423.en_US
dc.identifier.citedreferenceShaw, A. J., N. Devos, C. J. Cox, S. B. Boles, B. Shaw, A. M. Buchanan, L. Cave, and R. Seppelt. 2010. Peatmoss ( Sphagnum ) diversification associated with Miocene Northern Hemisphere climatic cooling? Mol. Phylogenet. Evol. 55: 1139 – 1145.en_US
dc.identifier.citedreferenceSilvera, K., L. S. Santiago, and K. Winter. 2005. Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes. Funct. Plant Biol. 32: 397 – 407.en_US
dc.identifier.citedreferenceSilvera, K., K. M. Neubig, M. W. Whitten, N. H. Williams, K. Winter, and J. C. Cushman. 2010. Evolution along the crassulacean acid metabolism continuum. Funct. Plant Biol. 37: 995 – 1010.en_US
dc.identifier.citedreferenceSilvestro, D., G. Zizka, and K. Schulte. 2014. Disentangling the effects of key innovations on the diversification of Bromelioideae (Bromeliaceae). Evolution 68: 163 – 175.en_US
dc.identifier.citedreferenceSimpson, G. G. 1953. The major features of evolution. Columbia Univ. Press, New York, NY.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.