Show simple item record

Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO 2

dc.contributor.authorKeppel‐aleks, Gretchenen_US
dc.contributor.authorWolf, Aaron S.en_US
dc.contributor.authorMu, Mingquanen_US
dc.contributor.authorDoney, Scott C.en_US
dc.contributor.authorMorton, Douglas C.en_US
dc.contributor.authorKasibhatla, Prasad S.en_US
dc.contributor.authorMiller, John B.en_US
dc.contributor.authorDlugokencky, Edward J.en_US
dc.contributor.authorRanderson, James T.en_US
dc.date.accessioned2015-01-07T15:24:04Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-01-07T15:24:04Z
dc.date.issued2014-11en_US
dc.identifier.citationKeppel‐aleks, Gretchen ; Wolf, Aaron S.; Mu, Mingquan; Doney, Scott C.; Morton, Douglas C.; Kasibhatla, Prasad S.; Miller, John B.; Dlugokencky, Edward J.; Randerson, James T. (2014). "Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO 2 ." Global Biogeochemical Cycles 28(11): 1295-1310.en_US
dc.identifier.issn0886-6236en_US
dc.identifier.issn1944-9224en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109962
dc.description.abstractThe response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr −1  K −1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain long‐term ESM responses. Key Points Accurate attribution of CO 2 variability is required to constrain coupled models Combined influence of drought and fire exceed ecosystem responses to temperature Temporal and spatial smoothing of CO 2 observations masks variability from fireen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAtmospheric CO 2en_US
dc.subject.otherCarbon Cycleen_US
dc.subject.otherDroughten_US
dc.subject.otherFireen_US
dc.subject.otherTerrestrial Ecosystemsen_US
dc.subject.otherClimate Variabilityen_US
dc.titleSeparating the influence of temperature, drought, and fire on interannual variability in atmospheric CO 2en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109962/1/gbc20215.pdf
dc.identifier.doi10.1002/2014GB004890en_US
dc.identifier.sourceGlobal Biogeochemical Cyclesen_US
dc.identifier.citedreferenceRanderson, J. T., M. V. Thompson, T. J. Conway, I. Fung, and C. B. Field ( 1997 ), The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide, Global Biogeochem. Cycles, 11 ( 4 ), 535 – 560, doi: 10.1029/97GB02268.en_US
dc.identifier.citedreferenceKasischke, E. S., E. J. Hyer, P. C. Novelli, L. P. Bruhwiler, N. H. F. French, A. I. Sukhinin, J. H. Hewson, and B. J. Stocks ( 2005 ), Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide, Global Biogeochem. Cycles, 19, GB1012, doi: 10.1029/2004GB002300.en_US
dc.identifier.citedreferenceKeeling, C. D., T. P. Whorf, M. Wahlen, and J. Vanderplicht ( 1995 ), Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375, 666 – 670.en_US
dc.identifier.citedreferenceKeppel‐Aleks, G., et al. ( 2013 ), Atmospheric carbon dioxide variability in the Community Earth System Model: Evaluation and transient dynamics during the twentieth and twenty‐first centuries, J. Clim., 26 ( 13 ), 4447 – 4475, doi: 10.1175/jcli-d-12-00589.1.en_US
dc.identifier.citedreferenceLangenfelds, R. L., R. J. Francey, B. C. Pak, L. P. Steele, J. Lloyd, C. M. Trudinger, and C. E. Allison ( 2002 ), Interannual growth rate variations of atmospheric CO 2 and its δ 13 C, H 2, CH 4, and CO between 1992 and 1999 linked to biomass burning, Global Biogeochem. Cycles, 16 ( 3 ), 1048, doi: 10.1029/2001GB001466.en_US
dc.identifier.citedreferenceMahecha, M. D., et al. ( 2010 ), Global convergence in the temperature sensitivity of respiration at ecosystem level, Science, 329 ( 5993 ), 838 – 840, doi: 10.1126/science.1189587.en_US
dc.identifier.citedreferenceNassar, R., et al. ( 2010 ), Modeling global atmospheric CO 2 with improved emission inventories and CO 2 production from the oxidation of other carbon species, Geosci. Model Dev., 3 ( 2 ), 689 – 716, doi: 10.5194/gmd-3-689-2010.en_US
dc.identifier.citedreferenceNepstad, D. C., et al. ( 1999 ), Large‐scale impoverishment of Amazonian forests by logging and fire, Nature, 398 ( 6727 ), 505 – 508.en_US
dc.identifier.citedreferenceNevison, C. D., N. M. Mahowald, S. C. Doney, I. D. Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley ( 2008 ), Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2, J. Geophys. Res., 113, G01010, doi: 10.1029/2007JG000408.en_US
dc.identifier.citedreferenceNobre, P., and J. Shukla ( 1996 ), Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America, J. Clim., 9 ( 10 ), 2464 – 2479, doi: 10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.en_US
dc.identifier.citedreferencePlumb, R. A., and J. D. Mahlman ( 1987 ), The zonally averaged transport characteristics of the GFDL general circulation/transport model, J. Atmos. Sci., 44 ( 2 ), 298 – 327, doi: 10.1175/1520-0469(1987)044<0298:TZATCO>2.0.CO;2.en_US
dc.identifier.citedreferenceRafelski, L. E., S. C. Piper, and R. F. Keeling ( 2009 ), Climate effects on atmospheric carbon dioxide over the last century, Tellus B, 61 ( 5 ), 718 – 731, doi: 10.1111/j.1600-0889.2009.00439.x.en_US
dc.identifier.citedreferenceGelman, A., X. Li Meng, and H. Stern ( 1996 ), Posterior predictive assessment of model fitness via realized discrepancies, Statistica Sinica, 6, 733 – 807.en_US
dc.identifier.citedreferenceRanderson, J. T., G. R. van der Werf, G. J. Collatz, L. Giglio, C. J. Still, P. Kasibhatla, J. B. Miller, J. W. C. White, R. S. DeFries, and E. S. Kasischke ( 2005 ), Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO 2 and δ 13 CO 2, Global Biogeochem. Cycles, 19, GB2019, doi: 10.1029/2004GB002366.en_US
dc.identifier.citedreferenceRayner, P. J., R. M. Law, C. E. Allison, R. J. Francey, C. M. Trudinger, and C. Pickett‐Heaps ( 2008 ), Interannual variability of the global carbon cycle (1992–2005) inferred by inversion of atmospheric CO 2 and δ 13 CO 2 measurements, Global Biogeochem. Cycles, 22, GB3008, doi: 10.1029/2007GB003068.en_US
dc.identifier.citedreferenceReichstein, M., et al. ( 2013 ), Climate extremes and the carbon cycle, Nature, 500 ( 7462 ), 287 – 295, doi: 10.1038/nature12350.en_US
dc.identifier.citedreferenceRienecker, M. M., et al. ( 2011 ), MERRA: NASA's modern‐era retrospective analysis for research and applications, J. Clim., 24 ( 14 ), 3624 – 3648, doi: 10.1175/jcli-d-11-00015.1.en_US
dc.identifier.citedreferenceRopelewski, C. F., and M. S. Halpert ( 1987 ), Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation, Mon. Weather Rev., 115 ( 8 ), 1606 – 1626, doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2.en_US
dc.identifier.citedreferenceSaleska, S. R., et al. ( 2003 ), Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance‐induced losses, Science, 302 ( 5650 ), 1554 – 1557, doi: 10.1126/science.1091165.en_US
dc.identifier.citedreferenceSchwalm, C. R., et al. ( 2010 ), Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis, Global Change Biol., 16 ( 2 ), 657 – 670, doi: 10.1111/j.1365-2486.2009.01991.x.en_US
dc.identifier.citedreferenceSchwalm, C. R., C. A. Williams, K. Schaefer, I. Baker, G. J. Collatz, and C. Rödenbeck ( 2011 ), Does terrestrial drought explain global CO 2 flux anomalies induced by El Niño?, Biogeosciences, 8 ( 9 ), 2493 – 2506, doi: 10.5194/bg-8-2493-2011.en_US
dc.identifier.citedreferenceSuntharalingam, P., D. J. Jacob, P. I. Palmer, J. A. Logan, R. M. Yantosca, Y. Xiao, and M. J. Evans ( 2004 ), Improved quantification of Chinese carbon fluxes using CO 2 /CO correlations in Asian outflow, J. Geophys. Res., 109, D18S18, doi: 10.1029/2003JD004362.en_US
dc.identifier.citedreferenceTodd‐Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison ( 2013 ), Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations, Biogeosciences, 10 ( 3 ), 1717 – 1736, doi: 10.5194/bg-10-1717-2013.en_US
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, G. J. Collatz, L. Giglio, P. S. Kasibhatla, A. F. Arellano Jr., S. C. Olsen, and E. S. Kasischke ( 2004 ), Continental‐scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period, Science, 303 ( 5654 ), 73 – 76, doi: 10.1126/science.1090753.en_US
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10 ( 23 ), 11,707 – 11,735, doi: 10.5194/acp-10-11707-2010.en_US
dc.identifier.citedreferenceWang, W., P. Ciais, R. R. Nemani, J. G. Canadell, S. Piao, S. Sitch, M. A. White, H. Hashimoto, C. Milesi, and R. B. Myneni ( 2013 ), Variations in atmospheric CO 2 growth rates coupled with tropical temperature, Proc. Natl. Acad. Sci. U.S.A., 110 ( 32 ), 13,061 – 13,066, doi: 10.1073/pnas.1219683110.en_US
dc.identifier.citedreferenceWang, X., et al. ( 2014 ), A two‐fold increase of carbon cycle sensitivity to tropical temperature variations, Nature, 506 ( 7487 ), 212 – 215, doi: 10.1038/nature12915.en_US
dc.identifier.citedreferenceZeng, F.‐W., G. Collatz, J. Pinzon, and A. Ivanoff ( 2013 ), Evaluating and quantifying the climate‐driven interannual variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at global scales, Remote Sens., 5 ( 8 ), 3918 – 3950.en_US
dc.identifier.citedreferenceZeng, N., A. Mariotti, and P. Wetzel ( 2005 ), Terrestrial mechanisms of interannual CO 2 variability, Global Biogeochem. Cycles, 19, GB1016, doi: 10.1029/2004GB002273.en_US
dc.identifier.citedreferenceAdler, R. F., et al. ( 2003 ), The Version‐2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeorol., 4 ( 6 ), 1147 – 1167, doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.en_US
dc.identifier.citedreferenceAkagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg ( 2011 ), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11 ( 9 ), 4039 – 4072, doi: 10.5194/acp-11-4039-2011.en_US
dc.identifier.citedreferenceAlden, C. B., J. B. Miller, and J. W. C. White ( 2010 ), Can bottom‐up ocean CO 2 fluxes be reconciled with atmospheric 13 C observations?, Tellus B, 62 ( 5 ), 369 – 388, doi: 10.1111/j.1600-0889.2010.00481.x.en_US
dc.identifier.citedreferenceAndreae, M. O., and P. Merlet ( 2001 ), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15 ( 4 ), 955 – 966, doi: 10.1029/2000GB001382.en_US
dc.identifier.citedreferenceAndres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden ( 2011 ), Monthly, global emissions of carbon dioxide from fossil fuel consumption, Tellus B, 63 ( 3 ), 309 – 327, doi: 10.1111/j.1600-0889.2011.00530.x.en_US
dc.identifier.citedreferenceArino, O., and J. M. Melinotte ( 1998 ), The 1993 Africa fire map, Int. J. Remote Sens., 19 ( 11 ), 2019 – 2023, doi: 10.1080/014311698214839.en_US
dc.identifier.citedreferenceAtkin, O. ( 2003 ), Thermal acclimation and the dynamic response of plant respiration to temperature, Trends Plant Sci., 8 ( 7 ), 343 – 351, doi: 10.1016/s1360-1385(03)00136-5.en_US
dc.identifier.citedreferenceBacastow, R. B. ( 1976 ), Modulation of atmospheric carbon dioxide by the Southern Oscillation, Nature, 261, 116 – 118.en_US
dc.identifier.citedreferenceBattle, M. O., M. L. Bender, P. P. Tans, J. W. White, J. T. Ellis, T. J. Conway, and R. J. Francey ( 2000 ), Global carbon sinks and their variability inferred from atmospheric O 2 and δ 13 C, Science, 287 ( 287 ), 2467 – 2470.en_US
dc.identifier.citedreferenceBerry, J., and O. Bjorkman ( 1980 ), Photosynthetic response and adaptation to temperature in higher plants, Annu. Rev. Plant Physiol., 31 ( 1 ), 491 – 543, doi: 10.1146/annurev.pp.31.060180.002423.en_US
dc.identifier.citedreferenceBonal, D., et al. ( 2008 ), Impact of severe dry season on net ecosystem exchange in the neotropical rainforest of French Guiana, Global Change Biol., 14 ( 8 ), 1917 – 1933, doi: 10.1111/j.1365-2486.2008.01610.x.en_US
dc.identifier.citedreferenceBousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. P. Tans ( 2000 ), Regional changes in carbon dioxide fluxes of land and oceans since 1980, Science, 290 ( 5495 ), 1342 – 1346.en_US
dc.identifier.citedreferenceBousquet, P., et al. ( 2006 ), Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443 ( 7110 ), 439 – 443, doi: 10.1038/nature05132.en_US
dc.identifier.citedreferenceBowman, D. M., et al. ( 2011 ), The human dimension of fire regimes on Earth, J. Biogeogr., 38 ( 12 ), 2223 – 2236, doi: 10.1111/j.1365-2699.2011.02595.x.en_US
dc.identifier.citedreferenceBraswell, B. H. ( 1997 ), The response of global terrestrial ecosystems to interannual temperature variability, Science, 278 ( 5339 ), 870 – 873, doi: 10.1126/science.278.5339.870.en_US
dc.identifier.citedreferenceChen, Y., J. T. Randerson, D. C. Morton, R. S. DeFries, G. J. Collatz, P. S. Kasibhatla, L. Giglio, Y. Jin, and M. E. Marlier ( 2011 ), Forecasting fire season severity in South America using sea surface temperature anomalies, Science, 334 ( 6057 ), 787 – 791, doi: 10.1126/science.1209472.en_US
dc.identifier.citedreferenceCox, P. M., D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, and C. M. Luke ( 2013 ), Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability, Nature, 494 ( 7437 ), 341 – 344, doi: 10.1038/nature11882.en_US
dc.identifier.citedreferenceDai, A., K. E. Trenberth, and T. T. Qian ( 2004 ), A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming, J. Hydrometeorol., 5, 1117 – 1130.en_US
dc.identifier.citedreferenceDavidson, E. A., and I. A. Janssens ( 2006 ), Temperature sensitivity of soil carbon decomposition and feedbacks to climate change, Nature, 440 ( 7081 ), 165 – 173, doi: 10.1038/nature04514.en_US
dc.identifier.citedreferenceDlugokencky, E. J., P. M. Lang, K. Masarie, A. M. Crotwell, and M. J. Crotwell ( 2013 ), Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1968–2012.en_US
dc.identifier.citedreferenceDoney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof ( 2009 ), Mechanisms governing interannual variability in upper‐ocean inorganic carbon system and air–sea CO 2 fluxes: Physical climate and atmospheric dust, Deep Sea Res., Part II, 56 ( 8–10 ), 640 – 655, doi: 10.1016/j.dsr2.2008.12.006.en_US
dc.identifier.citedreferenceDoughty, C. E., and M. L. Goulden ( 2008 ), Are tropical forests near a high temperature threshold?, J. Geophys. Res., 113, G00B07, doi: 10.1029/2007JG000632.en_US
dc.identifier.citedreferenceFarquhar, G. D., and M. L. Roderick ( 2003 ), Pinatubo, diffuse light, and the carbon cycle, Science, 299 ( 5615 ), 1997 – 1998, doi: 10.1126/science.1080681.en_US
dc.identifier.citedreferenceFrancey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier ( 1995 ), Changes in oceanic and terrestrial carbon uptake since 1982, Nature, 373 ( 6512 ), 326 – 330.en_US
dc.identifier.citedreferenceFrölicher, T. L., F. Joos, C. C. Raible, and J. L. Sarmiento ( 2013 ), Atmospheric CO 2 response to volcanic eruptions: The role of ENSO, season, and variability, Global Biogeochem. Cycles, 27, 239 – 251, doi: 10.1002/gbc.20028.en_US
dc.identifier.citedreferenceGatti, L. V., et al. ( 2014 ), Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements, Nature, 506 ( 7486 ), 76 – 80, doi: 10.1038/nature12957.en_US
dc.identifier.citedreferenceJones, C. D., M. Collins, P. M. Cox, and S. A. Spall ( 2001 ), The carbon cycle response to ENSO: A coupled climate–carbon cycle model study, J. Clim., 14 ( 21 ), 4113 – 4129, doi: 10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2.en_US
dc.identifier.citedreferenceJones, P. D., D. H. Lister, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice ( 2012 ), Hemispheric and large‐scale land‐surface air temperature variations: An extensive revision and an update to 2010, J. Geophys. Res., 117, D05127, doi: 10.1029/2011JD017139.en_US
dc.identifier.citedreferenceKalnay, E., et al. ( 1996 ), The NCEP/NCAR 40‐year reanalysis project, Bull. Am. Meteorol. Soc., 77 ( 3 ), 437 – 471, doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.