Show simple item record

Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?

dc.contributor.authorSchwadron, N. A.en_US
dc.contributor.authorBlake, J. B.en_US
dc.contributor.authorCase, A. W.en_US
dc.contributor.authorJoyce, C. J.en_US
dc.contributor.authorKasper, J.en_US
dc.contributor.authorMazur, J.en_US
dc.contributor.authorPetro, N.en_US
dc.contributor.authorQuinn, M.en_US
dc.contributor.authorPorter, J. A.en_US
dc.contributor.authorSmith, C. W.en_US
dc.contributor.authorSmith, S.en_US
dc.contributor.authorSpence, H. E.en_US
dc.contributor.authorTownsend, L. W.en_US
dc.contributor.authorTurner, R.en_US
dc.contributor.authorWilson, J. K.en_US
dc.contributor.authorZeitlin, C.en_US
dc.date.accessioned2015-01-07T15:24:09Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-01-07T15:24:09Z
dc.date.issued2014-11en_US
dc.identifier.citationSchwadron, N. A.; Blake, J. B.; Case, A. W.; Joyce, C. J.; Kasper, J.; Mazur, J.; Petro, N.; Quinn, M.; Porter, J. A.; Smith, C. W.; Smith, S.; Spence, H. E.; Townsend, L. W.; Turner, R.; Wilson, J. K.; Zeitlin, C. (2014). "Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?." Space Weather 12(11): 622-632.en_US
dc.identifier.issn1542-7390en_US
dc.identifier.issn1542-7390en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109973
dc.description.abstractThe Sun and its solar wind are currently exhibiting extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to examine the implications of these highly unusual solar conditions for human space exploration. We show that while these conditions are not a show stopper for long‐duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. While solar energetic particle events in cycle 24 present some hazard, the accumulated doses for astronauts behind 10 g/cm 2 shielding are well below current dose limits. Galactic cosmic radiation presents a more significant challenge: the time to 3% risk of exposure‐induced death (REID) in interplanetary space was less than 400 days for a 30 year old male and less than 300 days for a 30 year old female in the last cycle 23–24 minimum. The time to 3% REID is estimated to be ∼20% lower in the coming cycle 24–25 minimum. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we estimate exposures in extreme solar minimum conditions and the corresponding effects on allowable durations. Key Points GCR radiation is increasingly hazardous Radiation limited duration for missions in deep space Timing during solar cycle of missions remains a critical factoren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAm. Cancer Socen_US
dc.subject.otherSolar Evolutionen_US
dc.subject.otherRadiationen_US
dc.subject.otherSolar Winden_US
dc.titleDoes the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109973/1/swe20184.pdf
dc.identifier.doi10.1002/2014SW001084en_US
dc.identifier.sourceSpace Weatheren_US
dc.identifier.citedreferenceSchwadron, N. A., et al. ( 2010a ), Earth‐Moon‐Mars radiation environment module framework, Space Weather, 8, S00E02, doi: 10.1029/2009SW000523.en_US
dc.identifier.citedreferenceNational Council on Radiation Protection and Measurements (NCRP) ( 2000 ), Radiation protection guidance for activities in low‐Earth orbit, NCRP Tech. Rep. 132, Natl. Counc. on Radiat. Prot. and Meas., Bethesda, Md.en_US
dc.identifier.citedreferenceNealy, J. E., F. A. Cucinotta, J. W. Wilson, F. F. Badavi, N. Zapp, E. Semones, S. A. Walker, G. de Angelis, and S. R. Blattnig ( 2006 ), Pre‐engineering spaceflight validation of environmental models and the 2005 HZETRN simulation code, paper presented by 36th COSPAR Scientific Assembly, COSPAR Meeting, Beijing, China.en_US
dc.identifier.citedreferenceNewkirk, G., Jr., A. J. Hundhausen, and V. Pizzo ( 1981 ), Solar cycle modulation of galactic cosmic rays: Speculation on the role of coronal transients, J. Geophys. Res., 86, 5387 – 5396, doi: 10.1029/JA086iA07p05387.en_US
dc.identifier.citedreferenceNRC ( 2008 ), Managing Space Radiation Risk in the New Era of Space Exploration, Natl. Acad. Press, Washington, D. C.en_US
dc.identifier.citedreferenceNRC ( 2012 ), Technical Evaluation of the NASA Model for Cancer Risk to Astronauts due to Space Radiation, Natl. Acad. Press, Washington, D. C.en_US
dc.identifier.citedreferenceO'Neill, P. M. ( 2006 ), Badhwar O'Neill galactic cosmic ray model update based on Advanced Composition Explorer (ACE) energy spectra from 1997 to present, Adv. Space Res., 37, 1727 – 1733, doi: 10.1016/j.asr.2005.02.001.en_US
dc.identifier.citedreferenceOwens, M. J., and N. U. Crooker ( 2006 ), Coronal mass ejections and magnetic flux buildup in the heliosphere, J. Geophys. Res., 111, A10104, doi: 10.1029/2006JA011641.en_US
dc.identifier.citedreferenceOwens, M. J., N. A. Schwadron, N. U. Crooker, W. J. Hughes, and H. E. Spence ( 2007 ), Role of coronal mass ejections in the heliospheric hale cycle, Geophys. Res. Lett., 34, L06104, doi: 10.1029/2006GL028795.en_US
dc.identifier.citedreferencePotgieter, M. S., and J. A. Le Roux ( 1992 ), The simulated features of heliospheric cosmic‐ray modulation with a time‐dependent drift model: I. General effects of the changing neutral sheet over the period 1985–1990, Astrophys. J., 386, 336 – 346, doi: 10.1086/171020.en_US
dc.identifier.citedreferenceScherer, K., H. Fichtner, R. D. Strauss, S. E. S. Ferreira, M. S. Potgieter, and H.‐J. Fahr ( 2011 ), On cosmic ray modulation beyond the heliopause: Where is the modulation boundary?, Astrophys. J., 735, 128, doi: 10.1088/0004-637X/735/2/128.en_US
dc.identifier.citedreferenceSchwadron, N. ( 2012 ), Near‐real‐time situational awareness of space radiation hazards, Space Weather, 10, 10005, doi: 10.1029/2012SW000860.en_US
dc.identifier.citedreferenceSchwadron, N. A., and D. J. McComas ( 2008 ), The solar wind power from magnetic flux, Astrophys. J. Lett., 686, L33 – L36, doi: 10.1086/592877.en_US
dc.identifier.citedreferenceSchwadron, N. A., M. Owens, and N. U. Crooker ( 2008 ), The heliospheric magnetic field over the hale cycle, Astrophys. Space Sci. Trans., 4, 19 – 26, doi: 10.5194/astra-4-19-2008.en_US
dc.identifier.citedreferenceSchwadron, N. A., A. J. Boyd, K. Kozarev, M. Golightly, H. Spence, L. W. Townsend, and M. Owens ( 2010a ), Galactic cosmic ray radiation hazard in the unusual extended solar minimum between solar cycles 23 and 24, Space Weather, 8, S00E04, doi: 10.1029/2010SW000567.en_US
dc.identifier.citedreferenceSchwadron, N. A., D. E. Connick, and C. Smith ( 2010b ), Magnetic flux balance in the heliosphere, Astrophys. J. Lett., 722, L132 – L136, doi: 10.1088/2041-8205/722/2/L132.en_US
dc.identifier.citedreferenceSchwadron, N. A., C. W. Smith, H. E. Spence, J. C. Kasper, K. Korreck, M. L. Stevens, B. A. Maruca, K. K. Kiefer, S. T. Lepri, and D. McComas ( 2011 ), Coronal electron temperature from the solar wind scaling law throughout the space age, Astrophys. J., 739, 9, doi: 10.1088/0004-637X/739/1/9.en_US
dc.identifier.citedreferenceSchwadron, N. A., et al. ( 2012 ), Lunar radiation environment and space weathering from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER), J. Geophys. Res., 117, E00H13, doi: 10.1029/2011JE003978.en_US
dc.identifier.citedreferenceSchwadron, N. A., M. L. Goelzer, C. W. Smith, J. C. Kasper, K. Korreck, R. J. Leamon, S. T. Lepri, B. A. Maruca, D. McComas, and M. L. Steven ( 2014 ), Coronal electron temperature in the protracted solar minimum, the cycle 24 mini maximum, and over centuries, J. Geophys. Res. Space Physics, 119, 1486 – 1492, doi: 10.1002/2013JA019397.en_US
dc.identifier.citedreferenceShinn, J. L., J. W. Wilson, M. Weyland, and F. A. Cucinotta ( 1991 ), Improvements in computational accuracy of BRYNTRN (A Baryon transport code), NASA Tech. Rep. 3093, NASA, Springfield, Va.en_US
dc.identifier.citedreferenceSlaba, T. C., S. R. Blattnig, and F. F. Badavi ( 2010 ), Faster and more accurate transport procedures for HZETRN, J. Comput. Phys., 229, 9397 – 9417, doi: 10.1016/j.jcp.2010.09.010.en_US
dc.identifier.citedreferenceSmith, C. W., N. A. Schwadron, and C. E. DeForest ( 2013 ), Decline and recovery of the interplanetary magnetic field during the protracted solar minimum, Astrophys. J., 775, 59, doi: 10.1088/0004-637X/775/1/59.en_US
dc.identifier.citedreferenceSmith, C. W., K. G. McCracken, N. A. Schwadron, and M. L. Goelzer ( 2014 ), The heliospheric magnetic flux, solar wind proton flux, and cosmic ray intensity during the coming solar minimum, Space Weather, 12, 499 – 507, doi: 10.1002/2014SW001067.en_US
dc.identifier.citedreferenceSmith, E. J., and A. Balogh ( 2008 ), Decrease in heliospheric magnetic flux in this solar minimum: Recent Ulysses magnetic field observations, Geophys. Res. Lett., 35, L22103, doi: 10.1029/2008GL035345.en_US
dc.identifier.citedreferenceSpence, H. E., et al. ( 2010 ), CRaTER: The Cosmic Ray Telescope for the Effects of Radiation experiment on the Lunar Reconnaissance Orbiter mission, Space Sci. Rev., 150, 243 – 284, doi: 10.1007/s11214-009-9584-8.en_US
dc.identifier.citedreferenceSpence, H. E., M. J. Golightly, C. J. Joyce, M. D. Looper, N. A. Schwadron, S. S. Smith, L. W. Townsend, J. Wilson, and C. Zeitlin ( 2013 ), Relative contributions of galactic cosmic rays and lunar proton “albedo” to dose and dose rates near the Moon, Space Weather, 11, 643 – 650, doi: 10.1002/2013SW000995.en_US
dc.identifier.citedreferenceStone, E. C., et al. ( 1998 ), The cosmic‐ray isotope spectrometer for the advanced composition explorer, Space Sci. Rev., 86, 285 – 356, doi: 10.1023/A:1005075813033.en_US
dc.identifier.citedreferenceTownsend, L. W., M. PourArsalan, F. A. Cucinotta, M. Y. Kim, and N. A. Schwadron ( 2011 ), Transmission of galactic cosmic rays through Mars atmosphere, Space Weather, 9, S00E11, doi: 10.1029/2009SW000564.en_US
dc.identifier.citedreferenceWibberenz, G., I. G. Richardson, and H. V. Cane ( 2002 ), A simple concept for modeling cosmic ray modulation in the inner heliosphere during solar cycles 20–23, J. Geophys. Res., 107, 1353, doi: 10.1029/2002JA009461.en_US
dc.identifier.citedreferenceWilson, J. W., and F. F. Badavi ( 1986 ), Methods of galactic heavy ion transport, Radiat. Res., 108, 231 – 237.en_US
dc.identifier.citedreferenceWilson, J. W., L. W. Townsend, W. S. Schimmerling, G. S. Khandelwal, F. S. Khan, J. E. Nealy, F. A. Cucinotta, L. C. Simonsen, J. L. Shinn, and J. W. Norbury ( 1991 ), Transport methods and interactions for space radiations, NASA Tech. Rep. 1991‐1257, National Technical Information Service, Springfield, Va.en_US
dc.identifier.citedreferenceWilson, J. W., J. E. Nealy, G. de Angelis, M. S. Clowdsley, and F. F. Badavi ( 2003 ), Deep space environment and shielding, in Space Technology and Applications International Forum—STAIF 2003, Am. Inst. Phys. Conf. Ser., vol. 654, edited by M. S. El‐Genk, pp. 993 – 1010, Albuquerque, N. M.en_US
dc.identifier.citedreferenceZeitlin, C., et al. ( 2013 ), Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory, Science, 340 ( 6136 ), 1080 – 1084, doi: 10.1126/science.1235989.en_US
dc.identifier.citedreferenceACS ( 2007 ), Cancer Facts and Figures 2007, Am. Cancer Soc., Atlanta, Ga.en_US
dc.identifier.citedreferenceBadhwar, G. D., and P. M. O'Neill ( 1994 ), Long‐term modulation of galactic cosmic radiation and its model for space exploration, Adv. Space Res., 14 ( 10 ), 749 – 757.en_US
dc.identifier.citedreferenceBenton, E. R., E. V. Benton, and A. L. Frank ( 2010 ), Conversion between different forms of LET, Radiat. Meas., 45 ( 8 ), 957 – 959, doi: 10.1016/j.radmeas.2010.05.008.en_US
dc.identifier.citedreferenceCase, A. W. ( 2011 ), Galactic cosmic ray variations at the Moon, PhD thesis, Boston Univ., Boston, Mass.en_US
dc.identifier.citedreferenceCase, A. W., et al. ( 2013 ), The deep space galactic cosmic ray lineal energy spectrum at solar minimum, Space Weather, 11, 361 – 368, doi: 10.1002/swe.20051.en_US
dc.identifier.citedreferenceCliver, E. W., and A. G. Ling ( 2011 ), The floor in the solar wind magnetic field revisited, Sol. Phys., 274, 285 – 301, doi: 10.1007/s11207-010-9657-6.en_US
dc.identifier.citedreferenceConnick, D. E., C. W. Smith, and N. A. Schwadron ( 2009 ), The flux of open and toroidal interplanetary magnetic field as a function of heliolatitude and solar cycle, Astrophys. J., 695, 357 – 362, doi: 10.1088/0004-637X/695/1/357.en_US
dc.identifier.citedreferenceConnick, D. E., C. W. Smith, and N. A. Schwadron ( 2011 ), Interplanetary magnetic flux depletion during protracted solar minima, Astrophys. J., 727, 8, doi: 10.1088/0004-637X/727/1/8.en_US
dc.identifier.citedreferenceCrooker, N. U., J. T. Gosling, and S. W. Kahler ( 2002 ), Reducing heliospheric magnetic flux from coronal mass ejections without disconnection, J. Geophys. Res., 107, 1028, doi: 10.1029/2001JA000236.en_US
dc.identifier.citedreferenceCucinotta, F. A. ( 1993 ), Calculations of cosmic‐ray helium transport in shielding materials, Tech. Rep. NASA‐TP‐3354, L‐17225, NAS 1.60:3354, NASA Langley Res. Cent., Hampton, Va.en_US
dc.identifier.citedreferenceCucinotta, F. A., L. Chappell, and M. Y. Kim ( 2013 ), Space radiation cancer risk projections and uncertainties—2012, Tech. Rep. NASA TP 2013‐217375, NASA STI Program, Hampton, Va.en_US
dc.identifier.citedreferenceFisk, L. A., and N. A. Schwadron ( 1995 ), The influence of intermediate‐scale variations in the heliospheric magnetic field on the transport of galactic cosmic rays, J. Geophys. Res., 100, 7865 – 7871, doi: 10.1029/94JA03070.en_US
dc.identifier.citedreferenceFlorinski, V., G. P. Zank, and N. V. Pogorelov ( 2003 ), Galactic cosmic ray transport in the global heliosphere, J. Geophys. Res., 108, 1228, doi: 10.1029/2002JA009695.en_US
dc.identifier.citedreferenceGleeson, L. J., and W. I. Axford ( 1968 ), Solar modulation of galactic cosmic rays, Astrophys. J., 154, 1011, doi: 10.1086/149822.en_US
dc.identifier.citedreferenceGoelzer, M. L., C. W. Smith, N. A. Schwadron, and K. G. McCracken ( 2013 ), An analysis of heliospheric magnetic field flux based on sunspot number from 1749 to today and prediction for the coming solar minimum, J. Geophys. Res. Space Physics, 118, 7525 – 7531, doi: 10.1002/2013JA019404.en_US
dc.identifier.citedreferenceICRP ( 1991 ), 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publ. 60, Ann. ICRP 21(1–3).en_US
dc.identifier.citedreferenceJokipii, J. R., E. H. Levy, and W. B. Hubbard ( 1977 ), Effects of particle drift on cosmic‐ray transport. I—General properties, application to solar modulation, Astrophys. J., 213, 861 – 868, doi: 10.1086/155218.en_US
dc.identifier.citedreferenceJoyce, C. J., et al. ( 2013 ), Validation of PREDICCS using LRO/CRaTER observations during three major solar events in 2012, Space Weather, 11, 350 – 360, doi: 10.1002/swe.20059.en_US
dc.identifier.citedreferenceJoyce, C. J., et al. ( 2014 ), Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module, Space Weather, 12, 112 – 119, doi: 10.1002/2013SW000997.en_US
dc.identifier.citedreferencele Roux, J. A., G. P. Zank, and V. S. Ptuskin ( 1999 ), An evaluation of perpendicular diffusion models regarding cosmic ray modulation on the basis of a hydromagnetic description for solar wind turbulence, J. Geophys. Res., 104, 24,845 – 24,862, doi: 10.1029/1999JA900318.en_US
dc.identifier.citedreferenceManuel, R., S. E. S. Ferreira, M. S. Potgieter, R. D. Strauss, and N. E. Engelbrecht ( 2011 ), Time‐dependent cosmic ray modulation, Adv. Space Res., 47, 1529 – 1537, doi: 10.1016/j.asr.2010.12.007.en_US
dc.identifier.citedreferenceMcComas, D. J., R. W. Ebert, H. A. Elliott, B. E. Goldstein, J. T. Gosling, N. A. Schwadron, and R. M. Skoug ( 2008 ), Weaker solar wind from the polar coronal holes and the whole Sun, Geophys. Res. Lett., 35, L18103, doi: 10.1029/2008GL034896.en_US
dc.identifier.citedreferenceMcComas, D. J., N. Angold, H. A. Elliott, G. Livadiotis, N. A. Schwadron, R. M. Skoug, and C. W. Smith ( 2013 ), Weakest solar wind of the space age and the current “Mini” solar maximum, Astrophys. J., 779, 2, doi: 10.1088/0004-637X/779/1/2.en_US
dc.identifier.citedreferenceMcDonald, F. B., and L. F. Burlaga ( 1997 ), Global merged interaction regions, in Cosmic Winds and the Heliosphere, edited by J. R. Jokipii, C. P. Sonett, and M. S. Giampapa, pp. 581 – 616, Univ. of Ariz. Press, Tucson.en_US
dc.identifier.citedreferenceMewaldt, R. A., A. J. Davis, W. R. Binns, G. A. de Nolfo, J. S. George, M. H. Israel, R. A. Leske, E. C. Stone, M. E. Wiedenbeck, and T. T. von Rosenvinge ( 2005 ), The cosmic ray radiation dose in interplanetary space present day and worst‐case evaluations, Proc. 29th Int. Cosmic Ray Conf., 2, 433 – 436.en_US
dc.identifier.citedreferenceMewaldt, R. A., et al. ( 2010 ), Record‐setting cosmic‐ray intensities in 2009 and 2010, Astrophys. J. Lett., 723, L1 – L6, doi: 10.1088/2041-8205/723/1/L1.en_US
dc.identifier.citedreferenceNASA ( 2007 ), NASA space flight human system standard volume. 1: Crew health, Tech. Rep. NASA‐STD‐3001, NASA Headquarters, Washington, D. C.en_US
dc.identifier.citedreferenceNational Council on Radiation Protection and Measurements (NCRP) ( 1993 ), Limitation of exposure to ionizing radiation, Tech. Rep. NCRP Rep. 116, Natl. Counc. on Radiat. Prot. and Meas., Bethesda, Md.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.