Show simple item record

Modeling and Validating Chronic Pharmacological Manipulation of Circadian Rhythms

dc.contributor.authorKim, JKen_US
dc.contributor.authorForger, DBen_US
dc.contributor.authorMarconi, Men_US
dc.contributor.authorWood, Den_US
dc.contributor.authorDoran, Aen_US
dc.contributor.authorWager, Ten_US
dc.contributor.authorChang, Cen_US
dc.contributor.authorWalton, KMen_US
dc.date.accessioned2015-01-07T15:24:56Z
dc.date.available2015-01-07T15:24:56Z
dc.date.issued2013-07en_US
dc.identifier.citationKim, JK; Forger, DB; Marconi, M; Wood, D; Doran, A; Wager, T; Chang, C; Walton, KM (2013). "Modeling and Validating Chronic Pharmacological Manipulation of Circadian Rhythms." CPT: Pharmacometrics & Systems Pharmacology 2(7): 1-11.en_US
dc.identifier.issn2163-8306en_US
dc.identifier.issn2163-8306en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110096
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherSinauer Associatesen_US
dc.titleModeling and Validating Chronic Pharmacological Manipulation of Circadian Rhythmsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/1/psp4201334-sup-0010.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/2/psp4201334-sup-0009.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/3/psp4201334-sup-0011.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/4/psp4201334-sup-0008.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/5/psp4201334-sup-0005.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/6/psp4201334-sup-0012.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/7/psp4201334-sup-0006.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/8/psp4201334-sup-0013.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/9/psp4201334.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110096/10/psp4201334-sup-0007.pdf
dc.identifier.doi10.1038/psp.2013.34en_US
dc.identifier.sourceCPT: Pharmacometrics & Systems Pharmacologyen_US
dc.identifier.citedreferenceGooley, J.J. Treatment of circadian rhythm sleep disorders with light. Ann. Acad. Med. Singap. 37, 669 – 676 ( 2008 ).en_US
dc.identifier.citedreferenceGonzalez, O.R., Küper, C., Jung, K., Naval, P.C. Jr & Mendoza, E. Parameter estimation using Simulated Annealing for S‐system models of biochemical networks. Bioinformatics 23, 480 – 486 ( 2007 ).en_US
dc.identifier.citedreferenceWinfree, A.T. The Geometry of Biological Time ( Springer Verlag, New York, 1980 ).en_US
dc.identifier.citedreferenceGlass, L. & Winfree, A.T. Discontinuities in phase‐resetting experiments. Am. J. Physiol. 246, R251 – R258 ( 1984 ).en_US
dc.identifier.citedreferenceDaan, S. & Pittendrigh, C.S. Functional‐analysis of circadian pacemakers in nocturnal rodents 2: variability of phase response curves. J. Comp. Physiol. 106, 253 – 266 ( 1976 ).en_US
dc.identifier.citedreferenceKronauer, R.E., Forger, D.B. & Jewett, M.E. Quantifying human circadian pacemaker response to brief, extended, and repeated light stimuli over the phototopic range. J. Biol. Rhythms 14, 500 – 515 ( 1999 ).en_US
dc.identifier.citedreferenceComas, M., Beersma, D.G., Spoelstra, K. & Daan, S. Phase and period responses of the circadian system of mice (Mus musculus) to light stimuli of different duration. J. Biol. Rhythms 21, 362 – 372 ( 2006 ).en_US
dc.identifier.citedreferenceMorgenthaler, T.I. et al.; Standards of Practice Committee of the American Academy of Sleep Medicine. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 30, 1445 – 1459 ( 2007 ).en_US
dc.identifier.citedreferenceBarion, A. Circadian rhythm sleep disorders. Dis. Mon. 57, 423 – 437 ( 2011 ).en_US
dc.identifier.citedreferencePrice, M.A. CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling. Genes Dev. 20, 399 – 410 ( 2006 ).en_US
dc.identifier.citedreferenceCheong, J.K. et al. IC261 induces cell cycle arrest and apoptosis of human cancer cells via CK1d/∊ and Wnt/ß‐catenin independent inhibition of mitotic spindle formation. Oncogene 30, 2558 – 2569 ( 2011 ).en_US
dc.identifier.citedreferencePikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: A Universal Concept in Nonlinear Sciences 1st paperback edn. ( Cambridge University Press, Cambridge, 2003 ).en_US
dc.identifier.citedreferenceMcCarthy, M.J. & Welsh, D.K. Cellular circadian clocks in mood disorders. J. Biol. Rhythms 27, 339 – 352 ( 2012 ).en_US
dc.identifier.citedreferenceKennaway, D.J. Clock genes at the heart of depression. J. Psychopharmacol. (Oxford) 24, 5 – 14 ( 2010 ).en_US
dc.identifier.citedreferenceYang, S., Van Dongen, H.P., Wang, K., Berrettini, W. & Bucan, M. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol. Psychiatry 14, 143 – 155 ( 2009 ).en_US
dc.identifier.citedreferenceArey, R. & McClung, C.A. An inhibitor of casein kinase 1 epsilon/delta partially normalizes the manic‐like behaviors of the ClockΔ19 mouse. Behav. Pharmacol. 23, 392 – 396 ( 2012 ).en_US
dc.identifier.citedreferencePerreau‐Lenz, S. et al. Inhibition of the casein‐kinase‐1‐δ/∊ prevents relapse‐like alcohol drinking. Neuropsychopharmacology 37, 2121 – 2131 ( 2012 ).en_US
dc.identifier.citedreferenceMaier, S.F. Learned helplessness and animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 8, 435 – 446 ( 1984 ).en_US
dc.identifier.citedreferenceSpanagel, R. et al. The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat. Med. 11, 35 – 42 ( 2005 ).en_US
dc.identifier.citedreferencePrickaerts, J. et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J. Neurosci. 26, 9022 – 9029 ( 2006 ).en_US
dc.identifier.citedreferenceRoybal, K. et al. Mania‐like behavior induced by disruption of CLOCK. Proc. Natl. Acad. Sci. U.S.A. 104, 6406 – 6411 ( 2007 ).en_US
dc.identifier.citedreferenceHampp, G. et al. Regulation of monoamine oxidase A by circadian‐clock components implies clock influence on mood. Curr. Biol. 18, 678 – 683 ( 2008 ).en_US
dc.identifier.citedreferenceAntle, M.C. & Silver, R. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28, 145 – 151 ( 2005 ).en_US
dc.identifier.citedreferenceGallego, M. & Virshup, D.M. Post‐translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139 – 148 ( 2007 ).en_US
dc.identifier.citedreferenceKo, C.H. & Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2, R271 – R277 ( 2006 ).en_US
dc.identifier.citedreferenceLee, H., Chen, R., Lee, Y., Yoo, S. & Lee, C. Essential roles of CKIdelta and CKIepsilon in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 106, 21359 – 21364 ( 2009 ).en_US
dc.identifier.citedreferenceDunlap, J.C., Loros, J.J. & DeCoursey, P.J. Chronobiology: Biological Timekeeping ( Sinauer Associates, Sunderland, Massachusetts, 2004 ).en_US
dc.identifier.citedreferenceOda, G.A. & Friesen, W.O. Modeling two‐oscillator circadian systems entrained by two environmental cycles. PLoS ONE 6, e23895 ( 2011 ).en_US
dc.identifier.citedreferenceSahar, S. & Sassone‐Corsi, P. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9, 886 – 896 ( 2009 ).en_US
dc.identifier.citedreferenceKripke, D.F., Mullaney, D.J., Atkinson, M. & Wolf, S. Circadian rhythm disorders in manic‐depressives. Biol. Psychiatry 13, 335 – 351 ( 1978 ).en_US
dc.identifier.citedreferenceWehr, T.A., Turner, E.H., Shimada, J.M., Lowe, C.H., Barker, C. & Leibenluft, E. Treatment of rapidly cycling bipolar patient by using extended bed rest and darkness to stabilize the timing and duration of sleep. Biol. Psychiatry 43, 822 – 828 ( 1998 ).en_US
dc.identifier.citedreferenceLenox, R.H., Gould, T.D. & Manji, H.K. Endophenotypes in bipolar disorder. Am. J. Med. Genet. 114, 391 – 406 ( 2002 ).en_US
dc.identifier.citedreferenceMcClung, C.A. Circadian rhythms and mood regulation: insights from pre‐clinical models. Eur. Neuropsychopharmacol. 21 ( suppl. 4 ), S683 – S693 ( 2011 ).en_US
dc.identifier.citedreferenceHirota, T., Lewis, W.G., Liu, A.C., Lee, J.W., Schultz, P.G. & Kay, S.A. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK‐3beta. Proc. Natl. Acad. Sci. U.S.A. 105, 20746 – 20751 ( 2008 ).en_US
dc.identifier.citedreferencePandi‐Perumal, S.R., Trakht, I., Spence, D.W., Srinivasan, V., Dagan, Y. & Cardinali, D.P. The roles of melatonin and light in the pathophysiology and treatment of circadian rhythm sleep disorders. Nat. Clin. Pract. Neurol. 4, 436 – 447 ( 2008 ).en_US
dc.identifier.citedreferenceIsojima, Y. et al. CKIepsilon/delta‐dependent phosphorylation is a temperature‐insensitive, period‐determining process in the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 106, 15744 – 15749 ( 2009 ).en_US
dc.identifier.citedreferenceHirota, T. et al. Identification of small molecule activators of cryptochrome. Science 337, 1094 – 1097 ( 2012 ).en_US
dc.identifier.citedreferenceBadura, L. et al. An inhibitor of casein kinase I epsilon induces phase delays in circadian rhythms under free‐running and entrained conditions. J. Pharmacol. Exp. Ther. 322, 730 – 738 ( 2007 ).en_US
dc.identifier.citedreferenceWalton, K.M. et al. Selective inhibition of casein kinase 1 epsilon minimally alters circadian clock period. J. Pharmacol. Exp. Ther. 330, 430 – 439 ( 2009 ).en_US
dc.identifier.citedreferenceMeng, Q.J. et al. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc. Natl. Acad. Sci. U.S.A. 107, 15240 – 15245 ( 2010 ).en_US
dc.identifier.citedreferenceReppert, S.M. & Weaver, D.R. Coordination of circadian timing in mammals. Nature 418, 935 – 941 ( 2002 ).en_US
dc.identifier.citedreferenceWilsbacher, L.D. et al. Photic and circadian expression of luciferase in mPeriod1‐luc transgenic mice in vivo. Proc. Natl. Acad. Sci. U.S.A. 99, 489 – 494 ( 2002 ).en_US
dc.identifier.citedreferenceYan, L., Takekida, S., Shigeyoshi, Y. & Okamura, H. Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment‐specific response to light. Neuroscience 94, 141 – 150 ( 1999 ).en_US
dc.identifier.citedreferenceForger, D.B. & Peskin, C.S. A detailed predictive model of the mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A. 100, 14806 – 14811 ( 2003 ).en_US
dc.identifier.citedreferenceGallego, M., Eide, E.J., Woolf, M.F., Virshup, D.M. & Forger, D.B. An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc. Natl. Acad. Sci. U.S.A. 103, 10618 – 10623 ( 2006 ).en_US
dc.identifier.citedreferenceKim, J.K. & Forger, D.B. A mechanism for robust circadian timekeeping via stoichiometric balance. Mol. Syst. Biol. 8, 630 ( 2012 ).en_US
dc.identifier.citedreferenceSprouse, J., Reynolds, L., Kleiman, R., Tate, B., Swanson, T.A. & Pickard, G.E. Chronic treatment with a selective inhibitor of casein kinase I delta/epsilon yields cumulative phase delays in circadian rhythms. Psychopharmacology (Berl.) 210, 569 – 576 ( 2010 ).en_US
dc.identifier.citedreferenceKo, C.H. et al. Emergence of noise‐induced oscillations in the central circadian pacemaker. PLoS Biol. 8, e1000513 ( 2010 ).en_US
dc.identifier.citedreferenceKiessling, S., Eichele, G. & Oster, H. Adrenal glucocorticoids have a key role in circadian resynchronization in a mouse model of jet lag. J. Clin. Invest. 120, 2600 – 2609 ( 2010 ).en_US
dc.identifier.citedreferenceLévi, F., Altinok, A., Clairambault, J. & Goldbeter, A. Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos. Trans. A. Math. Phys. Eng. Sci. 366, 3575 – 3598 ( 2008 ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.