Show simple item record

Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood

dc.contributor.authorSchmithorst, Vincent J.en_US
dc.contributor.authorVannest, Jenniferen_US
dc.contributor.authorLee, Gregoryen_US
dc.contributor.authorHernandez‐garcia, Luisen_US
dc.contributor.authorPlante, Elenaen_US
dc.contributor.authorRajagopal, Akilaen_US
dc.contributor.authorHolland, Scott K.en_US
dc.date.accessioned2015-01-07T15:25:03Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationSchmithorst, Vincent J.; Vannest, Jennifer; Lee, Gregory; Hernandez‐garcia, Luis ; Plante, Elena; Rajagopal, Akila; Holland, Scott K. (2015). "Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood." Human Brain Mapping 36(1): 1-15.en_US
dc.identifier.issn1065-9471en_US
dc.identifier.issn1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110113
dc.description.abstractFunctional MRI using blood–oxygen‐level‐dependent (BOLD) imaging has provided unprecedented insights into the maturation of the human brain. Task‐based fMRI studies have shown BOLD signal increases with age during development (ages 5–18) for many cognitive domains such as language and executive function, while functional connectivity (resting‐state) fMRI studies investigating regionally synchronous BOLD fluctuations have revealed a developing functional organization of the brain from a local into a more distributed architecture. However, interpretation of these results is confounded by the fact that the BOLD signal is directly related to blood oxygenation driven by changes in blood flow and only indirectly related to neuronal activity, and may thus be affected by changing neuronal–vascular coupling. BOLD signal and cerebral blood flow (CBF) were measured simultaneously in a cohort of 113 typically developing awake participants ages 3–18 performing a narrative comprehension task. Using a novel voxelwise wild bootstrap analysis technique, an increased ratio of BOLD signal to relative CBF signal change with age (indicative of increased neuronal–vascular coupling) was seen in the middle temporal gyri and the left inferior frontal gyrus. Additionally, evidence of decreased relative oxygen metabolism (indicative of decreased neuronal activity) with age was found in the same regions. These findings raise concern that results of developmental BOLD studies cannot be unambiguously attributed to neuronal activity. Astrocytes and astrocytic processes may significantly affect the maturing functional architecture of the brain, consistent with recent research demonstrating a key role for astrocytes in mediating increased CBF following neuronal activity and for astrocyte processes in modulating synaptic connectivity. Hum Brain Mapp, 36:1–15, 2015 . © 2014 Wiley Periodicals, Inc .en_US
dc.publisherSaundersen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherChildrenen_US
dc.subject.otherLanguage Processingen_US
dc.subject.otherFunctional MRIen_US
dc.subject.otherNeuronal–Vascular Couplingen_US
dc.subject.otherDevelopmental Studiesen_US
dc.titleEvidence that neurovascular coupling underlying the BOLD effect increases with age during childhooden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110113/1/hbm22608.pdf
dc.identifier.doi10.1002/hbm.22608en_US
dc.identifier.sourceHuman Brain Mappingen_US
dc.identifier.citedreferenceQiu M, Paul Maguire R, Arora J, Planeta‐Wilson B, Weinzimmer D, Wang J, Wang Y, Kim H, Rajeevan N, Huang Y, Carson RE, Constable RT ( 2010 ): Arterial transit time effects in pulsed arterial spin labeling CBF mapping: Insight from a PET and MR study in normal human subjects. Magn Reson Med 63 ( 2 ): 374 – 384.en_US
dc.identifier.citedreferenceMumford JA, Hernandez‐Garcia L, Lee GR, Nichols TE ( 2006 ): Estimation efficiency and statistical power in arterial spin labeling fMRI. Neuroimage 33: 103 – 114.en_US
dc.identifier.citedreferenceOberheim NA, Wang X, Goldman S, Nedergaard M ( 2006 ): Astrocytic complexity distinguishes the human brain. Trends Neurosci 29: 547 – 553.en_US
dc.identifier.citedreferenceOrkin S, Fisher D, Look AT, Lux S, Ginsburg D, Nathan D. 2009. Nathan & Oski's Hematology of Infancy and Childhood. Philadelphia, PA: Saunders.en_US
dc.identifier.citedreferencePeiying L, Andrew CH, Karen MR, Kristen MK, Jarren S, Denise CP, Hanzhang L ( 2013 ): Age‐related differences in memory‐encoding fMRI responses after accounting for decline in vascular reactivity. Neuroimage 78: 415 – 425.en_US
dc.identifier.citedreferencePellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, Stella N, Magistretti PJ ( 1998 ): Evidence supporting the existence of an activity‐dependent astrocyte‐neuron lactate shuttle. Dev Neurosci 20: 291 – 299.en_US
dc.identifier.citedreferencePetzold GC, Murthy VN ( 2011 ): Role of astrocytes in neurovascular coupling. Neuron 71: 782 – 797.en_US
dc.identifier.citedreferencePower JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE ( 2012 ): Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59: 2142 – 2154.en_US
dc.identifier.citedreferenceRajkowska G, Hughes J, Stockmeier CA, Javier Miguel‐Hidalgo J, Maciag D ( 2013 ): Coverage of blood vessels by astrocytic endfeet is reduced in major depressive disorder. Biol Psychiatry 73: 613 – 621.en_US
dc.identifier.citedreferenceRubinov M, Sporns O ( 2010 ): Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52: 1059 – 1069.en_US
dc.identifier.citedreferenceSchapiro MB, Schmithorst VJ, Wilke M, Byars AW, Strawsburg RH, Holland SK ( 2004 ): BOLD fMRI signal increases with age in selected brain regions in children. Neuroreport 15: 2575 – 2578.en_US
dc.identifier.citedreferenceSchmithorst VJ, Hernandez‐Garcia L, Vannest J, Rajagopal A, Lee G, Holland SK ( 2014 ): Optimized simultaneous ASL and BOLD functional imaging of the whole brain. J Magn Reson Imaging 39: 1104 – 1117.en_US
dc.identifier.citedreferenceSmith SM ( 2002 ): Fast robust automated brain extraction. Hum Brain Mapp 17: 143 – 155.en_US
dc.identifier.citedreferenceStobart JL, Anderson CM ( 2013 ): Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci 7: 38.en_US
dc.identifier.citedreferenceSuzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM ( 2011 ): Astrocyte‐neuron lactate transport is required for long‐term memory formation. Cell 144: 810 – 823.en_US
dc.identifier.citedreferenceSzaflarski JP, Schmithorst VJ, Altaye M, Byars AW, Ret J, Plante E, Holland SK ( 2006 ): A longitudinal functional magnetic resonance imaging study of language development in children 5 to 11 years old. Ann Neurol 59: 796 – 807.en_US
dc.identifier.citedreferenceSzaflarski JP, Altaye M, Rajagopal A, Eaton K, Meng X, Plante E, Holland SK ( 2012 ): A 10‐year longitudinal fMRI study of narrative comprehension in children and adolescents. Neuroimage 63: 1188 – 1195.en_US
dc.identifier.citedreferenceTakahashi T, Shirane R, Sato S, Yoshimoto T ( 1999 ): Developmental changes of cerebral blood flow and oxygen metabolism in children. AJNR Am J Neuroradiol 20: 917 – 922.en_US
dc.identifier.citedreferenceTustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC ( 2010 ): N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29: 1310 – 1320.en_US
dc.identifier.citedreferenceUludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB ( 2004 ): Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23: 148 – 155.en_US
dc.identifier.citedreferenceVentura R, Harris KM ( 1999 ): Three‐dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19: 6897 – 6906.en_US
dc.identifier.citedreferenceWang J, Alsop DC, Li L, Listerud J, Gonzalez‐At JB, Schnall MD, Detre JA ( 2002 ): Comparison of quantitative perfusion imaging using arterial spin labeling at 1.5 and 4.0 Tesla. Magn Reson Med 48: 242 – 254.en_US
dc.identifier.citedreferenceWoolrich MW, Ripley BD, Brady M, Smith SM ( 2001 ): Temporal autocorrelation in univariate linear modeling of FMRI data. Neuroimage 14: 1370 – 1386.en_US
dc.identifier.citedreferenceWyss MT, Weber B, Treyer V, Heer S, Pellerin L, Magistretti PJ, Buck A ( 2008 ): Stimulation‐induced increases of astrocytic oxidative metabolism in rats and humans investigated with 1–11C‐acetate. J Cereb Blood Flow Metab 29: 44 – 56.en_US
dc.identifier.citedreferenceWyss MT, Magistretti PJ, Buck A, Weber B ( 2011 ): Labeled acetate as a marker of astrocytic metabolism. J Cereb Blood Flow Metab 31: 1668 – 1674.en_US
dc.identifier.citedreferenceZierk J, Arzideh F, Haeckel R, Rascher W, Rauh M, Metzler M ( 2013 ): Indirect determination of pediatric blood count reference intervals. Clin Chem Lab Med 51: 863 – 872.en_US
dc.identifier.citedreferenceZou P, Helton KJ, Smeltzer M, Li CS, Conklin HM, Gajjar A, Wang WC, Ware RE, Ogg RJ ( 2011 ): Hemodynamic responses to visual stimulation in children with sickle cell anemia. Brain Imaging Behav 5: 295 – 306.en_US
dc.identifier.citedreferenceAguirre GK, Detre JA, Zarahn E, Alsop DC ( 2002 ): Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15: 488 – 500.en_US
dc.identifier.citedreferenceAraque A ( 2008 ): Astrocytes process synaptic information. Neuron Glia Biol 4: 3 – 10.en_US
dc.identifier.citedreferenceAraque A, Parpura V, Sanzgiri RP, Haydon PG ( 1999 ): Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22: 208 – 215.en_US
dc.identifier.citedreferenceAvants BB, Epstein CL, Grossman M, Gee JC ( 2008 ): Symmetric diffeomorphic image registration with cross‐correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal 12: 26 – 41.en_US
dc.identifier.citedreferenceBen Achour S, Pascual O ( 2012 ): Astrocyte‐neuron communication: functional consequences. Neurochem Res 37: 2464 – 2473.en_US
dc.identifier.citedreferenceBiagi L, Abbruzzese A, Bianchi MC, Alsop DC, Del Guerra A, Tosetti M ( 2007 ): Age dependence of cerebral perfusion assessed by magnetic resonance continuous arterial spin labeling. J Magn Reson Imaging 25: 696 – 702.en_US
dc.identifier.citedreferenceBlockley NP, Griffeth VE, Simon AB, Buxton RB ( 2013 ): A review of calibrated blood oxygenation level‐dependent (BOLD) methods for the measurement of task‐induced changes in brain oxygen metabolism. NMR Biomed 26: 987 – 1003.en_US
dc.identifier.citedreferenceBulte DP, Drescher K, Jezzard P ( 2009 ): Comparison of hypercapnia‐based calibration techniques for measurement of cerebral oxygen metabolism with MRI. Magn Reson Med 61: 391 – 398.en_US
dc.identifier.citedreferenceChen JJ, Pike GB ( 2009 ): BOLD‐specific cerebral blood volume and blood flow changes during neuronal activation in humans. NMR Biomed 22: 1054 – 1062.en_US
dc.identifier.citedreferenceChiarelli PA, Bulte DP, Wise R, Gallichan D, Jezzard P ( 2007 ): A calibration method for quantitative BOLD fMRI based on hyperoxia. Neuroimage 37: 808 – 820.en_US
dc.identifier.citedreferenceChurch JA, Petersen SE, Schlaggar BL ( 2010 ): The “Task B problem” and other considerations in developmental functional neuroimaging. Hum Brain Mapp 31: 852 – 862.en_US
dc.identifier.citedreferenceChurch JA, Petersen SE, Schlaggar BL ( 2012 ): Comment on “The physiology of developmental changes in BOLD functional imaging signals” by Harris, Reynell, and Attwell. Dev Cogn Neurosci 2: 220 – 222.en_US
dc.identifier.citedreferenceClarke LE, Barres BA ( 2013 ): Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci 14: 311 – 321.en_US
dc.identifier.citedreferenceCruz NF, Lasater A, Zielke HR, Dienel GA ( 2005 ): Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92: 934 – 947.en_US
dc.identifier.citedreferenceDavis TL, Kwong KK, Weisskoff RM, Rosen BR ( 1998 ): Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc Natl Acad Sci USA 95: 1834 – 1839.en_US
dc.identifier.citedreferenceDosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov‐Schlaggar CN, Dubis JW, Feczko E, Coalson RS, Pruett JR, Jr, Barch DM, Petersen SE, Schlaggar BL ( 2010 ): Prediction of individual brain maturity using fMRI. Science 329: 1358 – 1361.en_US
dc.identifier.citedreferenceFernandez‐Seara MA, Aznarez‐Sanado M, Mengual E, Loayza FR, Pastor MA ( 2009 ): Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage 47: 1797 – 1808.en_US
dc.identifier.citedreferenceFigley CR, Stroman PW ( 2011 ): The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci 33: 577 – 588.en_US
dc.identifier.citedreferenceFilosa JA, Bonev AD, Nelson MT ( 2004 ): Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95: e73 – e81.en_US
dc.identifier.citedreferenceGauthier CJ, Madjar C, Tancredi FB, Stefanovic B, Hoge RD ( 2011 ): Elimination of visually evoked BOLD responses during carbogen inhalation: implications for calibrated MRI. Neuroimage 54: 1001 – 1011.en_US
dc.identifier.citedreferenceGonzalez‐At JB, Alsop DC, Detre JA ( 2000 ): Cerebral perfusion and arterial transit time changes during task activation determined with continuous arterial spin labeling. Magn Reson Med 43: 739 – 746.en_US
dc.identifier.citedreferenceGreve DN, Fischl B ( 2009 ): Accurate and robust brain image alignment using boundary‐based registration. Neuroimage 48: 63 – 72.en_US
dc.identifier.citedreferenceGriffeth VE, Buxton RB ( 2011 ): A theoretical framework for estimating cerebral oxygen metabolism changes using the calibrated‐BOLD method: modeling the effects of blood volume distribution, hematocrit, oxygen extraction fraction, and tissue signal properties on the BOLD signal. Neuroimage 58: 198 – 212.en_US
dc.identifier.citedreferenceGriffeth VE, Blockley NP, Simon AB, Buxton RB ( 2013 ): A New functional MRI approach for investigating modulations of brain oxygen metabolism. PLoS One 8: e68122.en_US
dc.identifier.citedreferenceGrubb RL, Jr, Raichle ME, Eichling JO, Ter‐Pogossian MM ( 1974 ): The effects of changes in PaCO 2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5: 630 – 639.en_US
dc.identifier.citedreferenceHarris JJ, Reynell C, Attwell D ( 2011 ): The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 1: 199 – 216.en_US
dc.identifier.citedreferenceHertz L, Peng L, Dienel GA ( 2007 ): Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J Cereb Blood Flow Metab 27: 219 – 249.en_US
dc.identifier.citedreferenceHoge RD ( 2012 ): Calibrated FMRI. Neuroimage 62: 930 – 937.en_US
dc.identifier.citedreferenceHoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB ( 1999 ): Investigation of BOLD signal dependence on cerebral blood flow and oxygen consumption: the deoxyhemoglobin dilution model. Magn Reson Med 42: 849 – 863.en_US
dc.identifier.citedreferenceHolland SK, Vannest J, Mecoli M, Jacola LM, Tillema JM, Karunanayaka PR, Schmithorst VJ, Yuan W, Plante E, Byars AW ( 2007 ): Functional MRI of language lateralization during development in children. Int J Audiol 46: 533 – 551.en_US
dc.identifier.citedreferenceHolland SK, Altaye M, Robertson S, Byars AW, Plante E, Szaflarski JP ( 2014 ): Data on the safety of repeated MRI in healthy children. NeuroImage: Clinical 4: 526 – 530.en_US
dc.identifier.citedreferenceHumphreys P, Kaufmann WE, Galaburda AM ( 1990 ): Developmental dyslexia in women: neuropathological findings in three patients. Ann Neurol 28: 727 – 738.en_US
dc.identifier.citedreferenceHutchison JL, Shokri‐Kojori E, Lu H, Rypma B ( 2013 ): A BOLD perspective on age‐related neurometabolic‐flow coupling and neural efficiency changes in human visual cortex. Front Psychol 4: 244.en_US
dc.identifier.citedreferenceIvanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S, Gubkina O, Zilberter M, Zilberter Y ( 2014 ): Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices. J Cereb Blood Flow Metab 34: 397 – 407.en_US
dc.identifier.citedreferenceJenkinson M, Bannister P, Brady M, Smith S ( 2002 ): Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17: 825 – 841.en_US
dc.identifier.citedreferenceJenkinson M, Smith S ( 2001 ): A global optimisation method for robust affine registration of brain images. Med Image Anal 5: 143 – 156.en_US
dc.identifier.citedreferenceJones TA, Greenough WT ( 1996 ): Ultrastructural evidence for increased contact between astrocytes and synapses in rats reared in a complex environment. Neurobiol Learn Mem 65: 48 – 56.en_US
dc.identifier.citedreferenceKastrup A, Kruger G, Neumann‐Haefelin T, Glover GH, Moseley ME ( 2002 ): Changes of cerebral blood flow, oxygenation, and oxidative metabolism during graded motor activation. Neuroimage 15: 74 – 82.en_US
dc.identifier.citedreferenceKim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB ( 1999 ): Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41: 1152 – 1161.en_US
dc.identifier.citedreferenceKoehler RC, Roman RJ, Harder DR ( 2009 ): Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 32: 160 – 169.en_US
dc.identifier.citedreferenceLedberg A, Akerman S, Roland PE ( 1998 ): Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage 8: 113 – 128.en_US
dc.identifier.citedreferenceLeung TS, Tachtsidis I, Tisdall MM, Pritchard C, Smith M, Elwell CE ( 2009 ): Estimating a modified Grubb's exponent in healthy human brains with near infrared spectroscopy and transcranial Doppler. Physiol Meas 30: 1 – 12.en_US
dc.identifier.citedreferenceLim J, Wu WC, Wang J, Detre JA, Dinges DF, Rao H ( 2010 ): Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time‐on‐task effect. Neuroimage 49: 3426 – 3435.en_US
dc.identifier.citedreferenceLin AL, Gao JH, Duong TQ, Fox PT ( 2010 ): Functional neuroimaging: a physiological perspective. Front Neuroenergetics 2.en_US
dc.identifier.citedreferenceLiu P, Uh J, Lu H ( 2011 ): Determination of spin compartment in arterial spin labeling MRI. Magn Reson Med 65: 120 – 127.en_US
dc.identifier.citedreferenceLuna B, Padmanabhan A, O'Hearn K ( 2010 ): What has fMRI told us about the development of cognitive control through adolescence? Brain Cogn 72: 101 – 113.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.