Show simple item record

Ultra-Low Power Optical Interface Circuits for Nearly Invisible Wireless Sensor Nodes.

dc.contributor.authorKim, Gyouhoen_US
dc.date.accessioned2015-01-30T20:11:42Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-01-30T20:11:42Z
dc.date.issued2014en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110399
dc.description.abstractTechnological advances in the semiconductor industry and integrated circuit design have resulted in electronic devices that are smaller and cheaper than ever, and yet they are more pervasive and powerful than what could hardly be imagined several decades ago. Nowadays, small hand-held devices such as smartphones have completely reshaped the way people communicate, share information, and get entertained. According to Bell’s Law, the next generation of computers will be cubic-millimeter-scale in volume with more prevalent presence than any other computing platform available today, opening up myriad of new applications. In this dissertation, a millimeter-scale wireless sensor node for visual sensing applications is proposed, with emphasis on the optical interface circuits that enable wireless optical communication and visual imaging. Visual monitoring and imaging with CMOS image sensors opens up a variety of new applications for wireless sensor nodes, ranging from surveillance to in vivo molecular imaging. In particular, the ability to detect motion can enable intelligent power management through on-demand duty cycling and reduce the data storage requirement. Optical communication provides an ultra-low power method to wirelessly control or transmit data to the sensor node after encapsulation and deployment. The proposed wireless sensor node is a nearly-invisible, yet a complete system with imaging, optics, two-way wireless communication, CPU, memory, battery and energy harvesting with solar cells. During its ultra-low power motion detection mode, the overall power consumption is merely 304 nW, allowing energy autonomous continuous operation with 10 klux of background lighting. Such complete features in the unprecedented form factor can revolutionize the role of electronics in our future daily lives, taking the “Smart Dust” concept from fiction to reality.en_US
dc.language.isoen_USen_US
dc.subjectWireless Sensor Nodesen_US
dc.subjectMillimeter Scale Imaging Systemen_US
dc.subjectVLSIen_US
dc.titleUltra-Low Power Optical Interface Circuits for Nearly Invisible Wireless Sensor Nodes.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSylvester, Dennis M.en_US
dc.contributor.committeememberBlaauw, Daviden_US
dc.contributor.committeememberKerkez, Brankoen_US
dc.contributor.committeememberZhang, Zhengyaen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110399/1/coolkgh_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.