Show simple item record

Novel Methods for Rheological Characterization of Polymers and Polymeric Biofilms.

dc.contributor.authorPavlovsky, Leoniden_US
dc.date.accessioned2015-01-30T20:12:16Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2015-01-30T20:12:16Z
dc.date.issued2014en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110442
dc.description.abstractThis dissertation reports that environmental conditions significantly impact the bulk mechanical properties of Staphylococcus epidermidis bacterial biofilms. Bacterial biofilms are commonly found as infections of implanted medical devices, which experience large shear forces within the bloodstream. The biofilm’s ability to withstand these forces and host immune responses makes infections difficult to eliminate. We aim to reduce the disease burden of biofilms by understanding the mechanical properties that allow them to survive in the bloodstream. In this dissertation, we will discuss various methods of in situ characterization of these biofilms that allows them to be studied directly in their natural growth environments. Additionally, we present a technique to weaken the biofilm that may allow for easier removal of infections. First, we design an in situ parallel plate bio-rheometer to grow the biofilm while replicating the shear stress (0.1 Pa) and temperature (37°C) environment that Staphylococcus epidermidis would encounter in the bloodstream. We are then able to directly characterize the elastic modulus (G’) and determine how biofilms respond to environmental conditions, such as osmotic stresses and temperature. We notice a non-monotonic dependence of G’ on NaCl concentration and an irreversible decrease in G’ after heating up to 60°C. Additionally, we determine the yield stress (~20 Pa) and fit the linear creep behavior with viscoelastic models to find the relaxation time (~750 s). We then investigate the effects of temperature on biofilm on three different scales: the bacterial cells, the extracellular polymers, and the bulk biofilm. We follow our growth protocol with a one-hour exposure at three temperatures: 37°C, 45°C, and 60°C. We find little difference between the lower temperatures, but significant decrease in cell viability and yield stress following a 60°C treatment. Finally, we examine a technique, cavitation rheometry, to rapidly characterize the elastic modulus of a material, which we believe can be used for in vivo diagnostics of soft biological matter. Through experimentation, simulation, and theoretical analysis, we extend this technique to viscoelastic materials of ~1 microliter volumes, comparable to typical clinical biofilm infections. Collectively, these results facilitate diagnostics of biological soft matter and bacterial biofilm infections based on material elasticity.en_US
dc.language.isoen_USen_US
dc.subjectRheologyen_US
dc.subjectMechanical Propertiesen_US
dc.subjectPolymersen_US
dc.subjectBacterial Biofilmsen_US
dc.subjectIn Situ Characterizationen_US
dc.titleNovel Methods for Rheological Characterization of Polymers and Polymeric Biofilms.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineChemical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberSolomon, Michael J.en_US
dc.contributor.committeememberYounger, John Graftonen_US
dc.contributor.committeememberBurns, Mark A.en_US
dc.contributor.committeememberLarson, Ronald G.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110442/1/leopavlo_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.