Show simple item record

Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy

dc.contributor.authorMa, X.en_US
dc.contributor.authorShi, H.‐j.en_US
dc.contributor.authorGu, J.en_US
dc.contributor.authorYang, Z.en_US
dc.contributor.authorChen, G.en_US
dc.contributor.authorLuesebrink, O.en_US
dc.contributor.authorHarders, H.en_US
dc.date.accessioned2015-02-19T15:40:18Z
dc.date.available2016-05-10T20:26:29Zen
dc.date.issued2015-03en_US
dc.identifier.citationMa, X.; Shi, H.‐j. ; Gu, J.; Yang, Z.; Chen, G.; Luesebrink, O.; Harders, H. (2015). "Influence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloy." Fatigue & Fracture of Engineering Materials & Structures 38(3): 340-351.en_US
dc.identifier.issn8756-758Xen_US
dc.identifier.issn1460-2695en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110545
dc.description.abstractThis paper investigated the effect of surface recrystallization (RX) on the low cycle fatigue (LCF) behaviour of a single crystal (SX) superalloy. LCF tests on both raw and recrystallized samples showed that fatigue life was significantly reduced by surface RX. Fractography indicated that fatigue cracks initiated from the casting defects in RX layer and multiple crack initiations were commonly observed. Moreover, RX grains exhibited predominantly transgranular cracking, in contrast to the intergranular fracture reported in literature. The fatigue crack propagation behaviour was discussed in light of fracture mechanics and crack growth life model. The fatigue cycles required to penetrate RX layer were estimated to be about one magnitude lower than that in forming an equivalent crack in SX specimens. It is suggested that the earlier crack initiation and promoted crack propagation in RX layer, as well as the trend of multiple initiations, are responsible for the fatigue degradation by RX.en_US
dc.publisherTMSen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercrack propagationen_US
dc.subject.otherrecrystallizationen_US
dc.subject.othercrack initiationen_US
dc.subject.otherlow cycle fatigueen_US
dc.subject.othersingle crystal superalloyen_US
dc.titleInfluence of surface recrystallization on the low cycle fatigue behaviour of a single crystal superalloyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110545/1/ffe12236.pdf
dc.identifier.doi10.1111/ffe.12236en_US
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structuresen_US
dc.identifier.citedreferenceShi, H. J., Zhang, H. F. and Wu, Y. Q. ( 2006 ) Effect of recrystallization on low‐cycle fatigue behavior of DZ4 directionally‐solidified superalloy. Key Eng. Mater., 306‐308, 175 – 180.en_US
dc.identifier.citedreferenceBürgel, R., Portella, P. D. and Preuhs J. ( 2000 ) Superalloys 2000 (Edited by T. M. Pollock, R. D. Kissinger, R. R. Bowman ), TMS, Seven Springs, pp. 229 – 238.en_US
dc.identifier.citedreferenceZhang, W. F., Li, Y. J., Liu, G. Y., Zhao, A. G., Tao, C. H., Tian, J. F. and Yao, G. ( 2004 ) Recrystallization and fatigue failure of DS alloy blades. Eng. Failure Anal., 11, 429 – 437.en_US
dc.identifier.citedreferenceOkazaki, M., Ohtera, I. and Harada, Y. ( 2004 ) Damage repair in CMSX‐4 alloy without fatigue life reduction penalty. Metall. Mat. Trans. A, 35, 535 – 542.en_US
dc.identifier.citedreferenceMa, X. F. ( 2010 ) Research on the low cycle fatigue properties of nickel‐based single crystal superalloy for large gas turbine. Ph.D. Dissertation, Tsinghua University: Beijing, China.en_US
dc.identifier.citedreferenceCox, D. C., Roebuck, B., Rae, C. M. F. and Reed, R. C. ( 2003 ) Recrystallisation of single crystal superalloy CMSX‐4. Mater. Sci. Technol., 19, 440 – 446.en_US
dc.identifier.citedreferenceMeng, J., Jin, T., Sun, X. F. and Hu, Z. Q. ( 2010 ) Effect of surface recrystallization on the creep rupture properties of a nickel‐base single crystal superalloy. Mater. Sci. Eng. A 527, 6119 – 6122.en_US
dc.identifier.citedreferenceZhang, B., Liu, C. K., He, Y. H., Tao, C. H. and Lu, X. ( 2010 ) Recrystallization of SRR99 single‐crystal superalloy: kinetics and microstructural evolution. Rare Metals, 29, 312 – 316.en_US
dc.identifier.citedreferenceZhao, Y., Wang, L., Li, H. Y., Yu, T. and Liu, Y. ( 2008 ) Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M. Rare Metals, 27, 425 – 428.en_US
dc.identifier.citedreferenceBond, S. D. and Martin, J. W. ( 1984 ) Surface recrystallization in a single‐crystal nickel‐based superalloy. J. Mater. Sci., 19, 3867 – 3872.en_US
dc.identifier.citedreferenceWang, L., Pyczak, F., Zhang, J. and Singer, R. F. ( 2009 ) On the role of eutectics during recrystallization in a single crystal nickel‐base superalloy – CMSX‐4. Int. J. Mater. Res., 100, 1046 – 1051.en_US
dc.identifier.citedreferenceXie, G., Wang, L., Zhang, J. and Lou, L. H. ( 2008 ) Influence of recrystallization on the high‐temperature properties of a directionally solidified Ni‐base superalloy. Metall. Mater. Trans. A, 39A, 206 – 210.en_US
dc.identifier.citedreferenceJo, C. Y. and Kim, H. M. ( 2003 ) Effect of recrystallisation on microstructural evolution and mechanical properties of single crystal nickel based superalloy CMSX‐2 ‐ part 2 ‐ creep behaviour of surface recrystallised single crystal. Mater. Sci. Technol., 19, 1671 – 1676.en_US
dc.identifier.citedreferenceLi, Y. J., Zhang, W. F. and Tao, C. H. ( 2006 ) Influence of recrystallized surface layer on high‐temperature stress rupture property of DZ4 superalloy. J. Mech. Strength, 28, 135 – 137.en_US
dc.identifier.citedreferenceShi H. J., Zhang, H. F. and Wu, Y. Q. ( 2006 ) Effect of recrystallization on low‐cycle fatigue behavior of DZ4 directionally‐solidified superalloy. Fract. Strength Solids Vi, Pts 1 and 2, 306‐308, 175 – 180.en_US
dc.identifier.citedreferenceMa, X. F. and Shi, H. J. ( 2013 ) In situ SEM studies of the low cycle fatigue behavior of DZ4 superalloy at elevated temperature: effect of partial recrystallization. Int J Fatigue, doi.org/10.1016/j.ijfatigue.2013.1011.1001.en_US
dc.identifier.citedreferenceChung, F. H., Smith, D. K. ( 1999 ) Industrial Applications of X‐ray Diffraction. CRC Press, New York.en_US
dc.identifier.citedreferenceMa, X. F., Shi, H. J., Gu, J. L., Wang, Z. X., Harders, H. and Malow, T. ( 2008 ) Temperature effect on low‐cycle fatigue behavior of nickel‐based single crystalline superalloy. Acta Mech. Solida Sin., 21, 289 – 297.en_US
dc.identifier.citedreferenceYi, J. Z., Torbet, C. J., Feng, Q., Pollock, T. M. and Jones, J. W. ( 2007 ) Ultrasonic fatigue of a single crystal Ni‐base superalloy at 1000 °C. Mater. Sci. Eng. A, 443, 142 – 149.en_US
dc.identifier.citedreferenceMa, X. F., Shi, H. J. and Gu, J. L. ( 2010 ) In‐situ scanning electron microscopy studies of small fatigue crack growth in recrystallized layer of a directionally solidified superalloy. Mater. Lett., 64, 2080 – 2083.en_US
dc.identifier.citedreferenceMa, X. F., Gu, J. L. and Shi, H. J. ( 2014 ) Low cycle fatigue fracture of a gas turbine Ni‐based superalloy with local recrystallizaiton. Mater. Lett., in review.en_US
dc.identifier.citedreferenceMurakami, Y. ( 1987 ) Stress Intensity Factors Handbook. Pergamon press, Oxford.en_US
dc.identifier.citedreferenceMa, X. F., Duan, Z., Shi, H. J., Murai, R. and Yanagisawa, E. ( 2010 ) Fatigue and fracture behavior of nickel‐based superalloy Inconel 718 up to the very high cycle regime. J. Zhejiang Univ‐Sci. A., 11, 727 – 737.en_US
dc.identifier.citedreferenceAffeldt, E. E. and Haug, J. ( 1998 ) Measurement and results of the crack growth rate in a single crystalline nickel‐based superalloy. MTU Aero Engines Munich.en_US
dc.identifier.citedreferenceAnderson, T. L. ( 1991 ) Fracture Mechanics. CRC Press, Boca Raton.en_US
dc.identifier.citedreferenceden Toonder, J. M. J., van Dommelen, J. A. W. and Baaijens, F. P. T. ( 1999 ) The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: theory, measurement and computation. Modell. Simul. Mater. Sci. Eng., 7, 909 – 928.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.