Show simple item record

Venus: Interpreting the spatial distribution of volcanically modified craters

dc.contributor.authorO'Rourke, Joseph G.en_US
dc.contributor.authorWolf, Aaron S.en_US
dc.contributor.authorEhlmann, Bethany L.en_US
dc.date.accessioned2015-02-19T15:40:20Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-02-19T15:40:20Z
dc.date.issued2014-12-16en_US
dc.identifier.citationO'Rourke, Joseph G.; Wolf, Aaron S.; Ehlmann, Bethany L. (2014). "Venus: Interpreting the spatial distribution of volcanically modified craters." Geophysical Research Letters 41(23): 8252-8260.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110549
dc.description.abstractTo understand the impact cratering record on Venus, we investigate two distinct resurfacing styles: localized, thin flows and large shield volcanoes. We statistically analyze the size‐frequency distribution of volcanically modified craters and, using Monte Carlo simulations, their spatial distribution. Lava flows partially fill most craters, darkening their floors in radar images. We find that a model featuring localized, thin flows occurring throughout geologic time predicts their observed distribution. Individual flows may be morphologically indistinguishable, but, combined, they cover large provinces. Recent mantle plumes may drive a small amount of hot spot magmatism that produces the observed clusters of large shield volcanoes and obviously embayed craters. Ultimately, our analysis demonstrates that two styles of volcanism are needed to explain the observed properties of impact craters and that catastrophic resurfacing is not required.Key PointsProducing the modern cratering record on Venus requires two types of volcanismThin, morphologically similar flows dominate and tall volcanoes are secondaryNoncatastrophic processes can explain the distribution of modified cratersen_US
dc.publisherArizona Univ. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVenusen_US
dc.titleVenus: Interpreting the spatial distribution of volcanically modified cratersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110549/1/grl52401.pdf
dc.identifier.doi10.1002/2014GL062121en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceSchaber, G. G., R. G. Strom, H. J. Moore, L. A. Soderblom, R. L. Kirk, D. J. Chadwick, D. D. Dawson, L. R. Gaddis, J. M. Boyce, and J. Russell ( 1992 ), Geology and distribution of impact craters on Venus: What are they telling us?, J. Geophys. Res., 97 ( E8 ), 13,257 – 13,301, doi: 10.1029/92JE01246.en_US
dc.identifier.citedreferencePhillips, R. J., and V. L. Hansen ( 1994 ), Tectonic and magmatic evolution of Venus, Annu. Rev. Earth Planet. Sci., 22 ( 1 ), 597 – 656, doi: 10.1146/annurev.ea.22.050194.003121.en_US
dc.identifier.citedreferencePhillips, R. J., R. F. Raubertas, R. E. Arvidson, I. C. Sarkar, R. R. Herrick, N. Izenberg, and R. E. Grimm ( 1992 ), Impact craters and Venus resurfacing history, J. Geophys. Res., 97 ( E10 ), 15,923 – 15,948, doi: 10.1029/92JE01696.en_US
dc.identifier.citedreferenceReese, C., V. Solomatov, and L. Moresi ( 1999 ), Non‐Newtonian stagnant lid convection and magmatic resurfacing on Venus, Icarus, 80, 67 – 80.en_US
dc.identifier.citedreferenceReese, C. C., V. S. Solomatov, and C. P. Orth ( 2007 ), Mechanisms for cessation of magmatic resurfacing on Venus, J. Geophys. Res., 112, E04S04, doi: 10.1029/2006JE002782.en_US
dc.identifier.citedreferenceRomeo, I. ( 2013 ), Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: The effect of the Beta‐Atla‐Themis anomaly, Planet. Space Sci., 87, 157 – 172, doi: 10.1016/j.pss.2013.07.010.en_US
dc.identifier.citedreferenceSchultz, P. H., and P. D. Spudis ( 1983 ), Beginning and end of lunar mare volcanism, Nature, 302 ( 5905 ), 233 – 236, doi: 10.1038/302233a0.en_US
dc.identifier.citedreferenceScott, D., and C. Tout ( 1989 ), Nearest neighbour analysis of random distributions on a sphere, Mon. Not. R. Astron. Soc., 241, 109 – 117.en_US
dc.identifier.citedreferenceSmrekar, S. E., and C. Sotin ( 2012 ), Constraints on mantle plumes on Venus: Implications for volatile history, Icarus, 217 ( 2 ), 510 – 523, doi: 10.1016/j.icarus.2011.09.011.en_US
dc.identifier.citedreferenceSmrekar, S. E., E. R. Stofan, N. Mueller, A. Treiman, L. Elkins‐Tanton, J. Helbert, G. Piccioni, and P. Drossart ( 2010 ), Recent hotspot volcanism on Venus from VIRTIS emissivity data, Science, 328 ( 5978 ), 605 – 608, doi: 10.1126/science.1186785.en_US
dc.identifier.citedreferenceSolomatov, V. S. ( 1995 ), Scaling of temperature‐ and stress‐dependent viscosity convection, Phys. Fluids, 7 ( 2 ), 266, doi: 10.1063/1.868624.en_US
dc.identifier.citedreferenceSolomatov, V. S., and L.‐N. Moresi ( 1996 ), Stagnant lid convection on Venus, J. Geophys. Res., 101 ( E2 ), 4737 – 4753, doi: 10.1029/95JE03361.en_US
dc.identifier.citedreferenceSolomatov, V. S., and L.‐N. Moresi ( 2000 ), Scaling of time‐dependent stagnant lid convection: Application to small‐scale convection on Earth and other terrestrial planets, J. Geophys. Res., 105 ( B9 ), 21,795 – 21,818, doi: 10.1029/2000JB900197.en_US
dc.identifier.citedreferenceStofan, E., A. Brian, and J. Guest ( 2005 ), Resurfacing styles and rates on Venus: Assessment of 18 Venusian quadrangles, Icarus, 173 ( 2 ), 312 – 321, doi: 10.1016/j.icarus.2004.08.004.en_US
dc.identifier.citedreferenceStrom, R., G. Schaber, and D. Dawson ( 1994 ), The global resurfacing of Venus, J. Geophys. Res., 99, 10,899 – 10,926, doi: 10.1029/94JE00388.en_US
dc.identifier.citedreferenceTurcotte, D. L. ( 1993 ), An episodic hypothesis for Venusian tectonics, J. Geophys. Res., 98 ( E9 ), 17,061 – 17,068, doi: 10.1029/93JE01775.en_US
dc.identifier.citedreferenceWeizman, A., D. J. Stevenson, D. Prialnik, and M. Podolak ( 2001 ), Modeling the volcanism on Mars, Icarus, 150 ( 2 ), 195 – 205, doi: 10.1006/icar.2000.6572.en_US
dc.identifier.citedreferenceWichman, R. W. ( 1999 ), Internal crater modification on Venus: Recognizing crater‐centered volcanism by changes in floor morphometry and floor brightness, J. Geophys. Res., 104 ( E9 ), 21,957 – 21,977, doi: 10.1029/1997JE000428.en_US
dc.identifier.citedreferenceAgnor, C. B., R. M. Canup, and H. F. Levison ( 1999 ), On the character and consequences of large impacts in the late stage of terrestrial planet formation, Icarus, 142 ( 1 ), 219 – 237, doi: 10.1006/icar.1999.6201.en_US
dc.identifier.citedreferenceArmann, M., and P. J. Tackley ( 2012 ), Simulating the thermochemical magmatic and tectonic evolution of Venus's mantle and lithosphere: Two‐dimensional models, J. Geophys. Res., 117, E12003, doi: 10.1029/2012JE004231.en_US
dc.identifier.citedreferenceBasilevsky, A. T., and J. W. Head ( 1998 ), The geologic history of Venus: A stratigraphic view, J. Geophys. Res., 103 ( E4 ), 8531 – 8544, doi: 10.1029/98JE00487.en_US
dc.identifier.citedreferenceBasilevsky, A. T., and J. W. Head ( 2000 ), Geologic units on Venus: Evidence for their global correlation, Planet. Space Sci., 48 ( 1 ), 75 – 111, doi: 10.1016/S0032‐0633(99)00083‐5.en_US
dc.identifier.citedreferenceBasilevsky, A. T., and J. W. Head ( 2002 ), Venus: Timing and rates of geologic activity, Geology, 30 ( 11 ), 1015 – 1018, doi: 10.1130/0091‐7613(2002)030<1015:VTAROG>2.0.CO;2.en_US
dc.identifier.citedreferenceBjonnes, E., V. Hansen, B. James, and J. Swenson ( 2012 ), Equilibrium resurfacing of Venus: Results from new Monte Carlo modeling and implications for Venus surface histories, Icarus, 217 ( 2 ), 451 – 461, doi: 10.1016/j.icarus.2011.03.033.en_US
dc.identifier.citedreferenceBullock, M., and D. H. Grinspoon ( 2001 ), The recent evolution of climate on Venus, Icarus, 150 ( 1 ), 19 – 37, doi: 10.1006/icar.2000.6570.en_US
dc.identifier.citedreferenceCollins, G. C., J. W. Head, A. T. Basilevsky, and M. A. Ivanov ( 1999 ), Evidence for rapid regional plains emplacement on Venus from the population of volcanically embayed impact craters, J. Geophys. Res., 104 ( E10 ), 24,121 – 24,140, doi: 10.1029/1999JE001041.en_US
dc.identifier.citedreferenceCrumpler, L. S., J. C. Aubele, D. A. Senske, S. T. Keddie, K. P. Magee, and J. W. Head ( 1997 ), Volcanoes and centers of volcanism on Venus, in Venus II, edited by S. W. Bougher, a. D. M. Hunten, and R. J. Phillips, pp. 697 – 756, Arizona Univ. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceGuest, J., and E. R. Stofan ( 1999 ), A new view of the stratigraphic history of Venus, Icarus, 139 ( 1 ), 55 – 66, doi: 10.1006/icar.1999.6091.en_US
dc.identifier.citedreferenceHansen, V., and I. Lopez ( 2010 ), Venus records a rich early history, Geology, 38 ( 4 ), 311 – 314, doi: 10.1130/G30587.1.en_US
dc.identifier.citedreferenceHauck, S. A., R. J. Phillips, and M. H. Price ( 1998 ), Venus: Crater distribution and plains resurfacing models, J. Geophys. Res., 103 ( E6 ), 13,635 – 13,642, doi: 10.1029/98JE00400.en_US
dc.identifier.citedreferenceHead, J. W., L. S. Crumpler, J. C. Aubele, J. E. Guest, and R. S. Saunders ( 1992 ), Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data, J. Geophys. Res., 13 ( E8 ), 13,153 – 13,197, doi: 10.1029/92JE01273.en_US
dc.identifier.citedreferenceHerrick, R., and R. J. Phillips ( 1994 ), Implications of a global survey of Venusian impact craters, Icarus, 111 ( 2 ), 387 – 416, doi: 10.1006/icar.1994.1152.en_US
dc.identifier.citedreferenceHerrick, R. R., and M. E. Rumpf ( 2011 ), Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters, J. Geophys. Res., 116, E02004, doi: 10.1029/2010JE003722.en_US
dc.identifier.citedreferenceHerrick, R. R., and V. L. Sharpton ( 2000 ), Implications from stereo‐derived topography of Venusian impact craters, J. Geophys. Res., 105 ( E8 ), 20,245 – 20,262, doi: 10.1029/1999JE001225.en_US
dc.identifier.citedreferenceHerrick, R. R., V. L. Sharpton, M. C. Malin, S. N. Lyons, and K. Feely ( 1997 ), Morphology and morphometry of impact craters, in Venus II, edited by S. W. Bougher, a. D. M. Hunten and R. J. Phillips, pp. 1015 – 1046, Arizona Univ. Press., Tucson, Ariz.en_US
dc.identifier.citedreferenceIvanov, M. A., and J. W. Head ( 2011 ), Global geological map of Venus, Planet. Space Sci., 59 ( 13 ), 1559 – 1600, doi: 10.1016/j.pss.2011.07.008.en_US
dc.identifier.citedreferenceIvanov, M. A., and J. W. Head ( 2013 ), The history of volcanism on Venus, Planet. Space Sci., 84, 66 – 92, doi: 10.1016/j.pss.2013.04.018.en_US
dc.identifier.citedreferenceIzenberg, N. R., R. E. Arvidson, and R. J. Phillips ( 1994 ), Impact crater degradation on Venusian plains, Geophys. Res. Lett., 21 ( 4 ), 289 – 292, doi: 10.1029/94GL00080.en_US
dc.identifier.citedreferenceKorenaga, J. ( 2010 ), On the likelihood of plate tectonics on Super‐Earths: Does size matter?, Astrophys. J. Lett., 725 ( 1 ), L43 – L46, doi: 10.1088/2041‐8205/725/1/L43.en_US
dc.identifier.citedreferenceKorenaga, J. ( 2012 ), Plate tectonics and planetary habitability: Current status and future challenges, Ann. N.Y. Acad. Sci., 1260, 87 – 94, doi: 10.1111/j.1749‐6632.2011.06276.x.en_US
dc.identifier.citedreferenceMcKinnon, W. B., K. J. Zhanle, B. D. Ivanov, and J. H. Melosh ( 1997 ), Cratering on Venus: Models and observations, in Venus II, edited by S. W. Bougher, a. D. M. Hunten and R. J. Phillips, pp. 969 – 1014, Arizona Univ. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceMoresi, L., and V. Solomatov ( 1998 ), Mantle convection with a brittle lithosphere: Thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 133 ( 3 ), 669 – 682, doi: 10.1046/j.1365‐246X.1998.00521.x.en_US
dc.identifier.citedreferenceNamiki, N., and S. C. Solomon ( 1998 ), Volcanic degassing of argon and helium and the history of crustal production on Venus, J. Geophys. Res., 103 ( E2 ), 3655 – 3677, doi: 10.1029/97JE03032.en_US
dc.identifier.citedreferenceNoack, L., D. Breuer, and T. Spohn ( 2012 ), Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus, Icarus, 217 ( 2 ), 484 – 498, doi: 10.1016/j.icarus.2011.08.026.en_US
dc.identifier.citedreferenceO'Rourke, J. G., and J. Korenaga ( 2012 ), Terrestrial planet evolution in the stagnant‐lid regime: Size effects and the formation of self‐destabilizing crust, Icarus, 221 ( 2 ), 1043 – 1060, doi: 10.1016/j.icarus.2012.10.015.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.