Show simple item record

Modeling subsolar thermospheric waves during a solar flare and penetration electric fields

dc.contributor.authorZhu, Jieen_US
dc.contributor.authorRidley, Aaron J.en_US
dc.date.accessioned2015-02-19T15:40:21Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-02-19T15:40:21Z
dc.date.issued2014-12en_US
dc.identifier.citationZhu, Jie; Ridley, Aaron J. (2014). "Modeling subsolar thermospheric waves during a solar flare and penetration electric fields." Journal of Geophysical Research: Space Physics 119(12): 10507-10527.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110550
dc.description.abstractThermospheric waves occurring around the time of the 14 July 2000 solar flare were investigated using the Global Ionosphere and Thermosphere Model. The simulation results showed that extensive acoustic and gravity waves were excited by the solar flare in the subsolar region. The subsolar buoyancy period at 400 km altitude was approximately 16 min. Gravity waves with frequencies lower than the buoyancy frequency traveled from the dayside to the nightside and converged in the longitudinal region that was the antisubsolar region when the flare occurred. Acoustic waves with frequencies well above the buoyancy frequency propagated upward from approximately 130 km altitude with increasing amplitudes. The power spectra of the vertical neutral winds in the acoustic branch peaked at a period of approximately 13 min, just below the buoyancy period. The gradient in pressure was the driver of the two waves, while the ion drag caused a phase delay between the variations in the pressure gradient and the vertical velocity in the acoustic waves. An anticorrelation in the high‐frequency component of the vertical neutral wind exists between the subsolar and antisubsolar points at times away from the flare, which was driven by the rapid variations of the ion flows due to the penetration electric field. It is suggested that the penetration of the high‐latitude interplanetary magnetic field electric field to low latitudes can drive neutral waves in the equatorial region through momentum coupling with rapidly changing ion flows.Key PointsThermospheric waves were excited by flare in the subsolar regionGravity waves converged in the antisubsolar region when the flare occurredPenetration E fields drive equatorial neutral wave through neutral‐ion couplingen_US
dc.publisherPeter Peregrinus Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherpenetration electric fielden_US
dc.subject.otherthermospheric wavesen_US
dc.subject.othersolar flareen_US
dc.titleModeling subsolar thermospheric waves during a solar flare and penetration electric fieldsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110550/1/jgra51512.pdf
dc.identifier.doi10.1002/2014JA020473en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRidley, A. J. ( 2000 ), Estimations of the uncertainty in timing the relationship between magnetospheric and solar wind processes, J. Atmos. Sol. Terr. Phys., 62, 757 – 771, doi: 10.1016/S1364-6826(00)00057-2.en_US
dc.identifier.citedreferenceNishida, A. ( 1968 ), Coherence of geomagnetic dp 2 fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73, 5549 – 5559, doi: 10.1029/JA073i017p05549.en_US
dc.identifier.citedreferencePawlowski, D. J., and A. J. Ridley ( 2008 ), Modeling the thermospheric response to solar flares, J. Geophys. Res., 113, A10309, doi: 10.1029/2008JA013182.en_US
dc.identifier.citedreferenceRichmond, A. D. ( 1989 ), Modeling the ionosphere wind dynamo: A review, Pure Appl. Geophys., 131, 413 – 435, doi: 10.1007/978-3-0348-9280-3_7.en_US
dc.identifier.citedreferenceRichmond, A. D. ( 1995 ), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelec., 47, 91 – 212.en_US
dc.identifier.citedreferenceRideout, W., and A. Coster ( 2006 ), Automated GPS processing for global total electron content data, GPS Solutions, 10, 219 – 228, doi: 10.1007/s10291-006-0029-5.en_US
dc.identifier.citedreferenceRidley, A., Y. Deng, and G. Tòth ( 2006 ), The global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864, doi: 10.1016/j.jastp.2006.01.008.en_US
dc.identifier.citedreferenceSastri, J. H., J. V. S. V. Rao, D. R. K. Rao, and B. M. Pathan ( 2001 ), Daytime equatorial geomagnetic H field response to the growth phase and expansion phase onset of isolated substorms: Case studies and their implications, J. Geophys. Res., 106, 29,925 – 29,933, doi: 10.1029/2001JA900120.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceSouthwood, D. J. ( 1977 ), The role of hot plasma in magnetospheric convection, J. Geophys. Res., 82, 5512 – 5520, doi: 10.1029/JA082i035p05512.en_US
dc.identifier.citedreferenceStonehocker, G. H. ( 1970 ), Advanced telecommunication forecasting technique, AGARD Conf. Proc., 49, 27 – 1.en_US
dc.identifier.citedreferenceSpace Weather Prediction Center ( 2013 ), Historical SWP products from 1996. [Available at http://www.swpc.noaa.gov/ftpmenu/warehouse.html/.]en_US
dc.identifier.citedreferenceTarpley, J. D. ( 1970 ), The ionosphere wind dynamo—I: Lunar tide, Planet. Space Sci., 18, 1075 – 1090, doi: 10.1016/0032-0633(70)90109-1.en_US
dc.identifier.citedreferenceVasyliunas, V. ( 1972 ), The Interrelationship of Magnetospheric Processes in Earth's Magnetospheric Processes, Springer, Dordrecht, Netherlands.en_US
dc.identifier.citedreferenceVäisälä, V. ( 1925 ), Ober die virkung der windeschwankungen auf die pilot beobachtungen, Comment. Phys. Math., 11, 37.en_US
dc.identifier.citedreferenceVichare, G., A. J. Ridley, and E. Yiǧit ( 2012 ), Quiet‐time low latitude ionospheric electrodynamics in the non‐hydrostatic global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 80, 161 – 172, doi: 10.1016/j.jastp.2012.01.009.en_US
dc.identifier.citedreferenceWang, W., J. Lei, A. G. Burns, M. Wiltberger, A. D. Richmond, S. C. Solomon, T. L. Killeen, E. R. Talaat, and D. N. Anderson ( 2008 ), Ionospheric electric field variations during a geomagnetic storm simulated by a coupled magnetosphere ionosphere thermosphere (CMIT) model, Geophys. Res. Lett., 35, L18105, doi: 10.1029/2008GL035155.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.en_US
dc.identifier.citedreferenceYeh, K. C., and C. H. Liu ( 1974 ), Acoustic‐gravity waves in the upper atmosphere, Rev. Geophys. Space Phys., 12, 193 – 216, doi: 10.1029/RG012i002p00193.en_US
dc.identifier.citedreferenceBrunt, D. ( 1927 ), The period of simple vertical oscillations in the atmosphere, Q. J. R. Meteorol. Soc., 53, 30 – 31, doi: 10.1002/qj.49705322103.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare irradiance spectral model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.en_US
dc.identifier.citedreferenceCoster, A., and A. Komjathy ( 2008 ), Space weather and the Global Positioning System, Space Weather, 6, So6D04, doi: 10.1029/2008SW000400.en_US
dc.identifier.citedreferenceDavides, K. ( 1990 ), Ionospheric Radio, Peter Peregrinus Ltd., London.en_US
dc.identifier.citedreferenceDeng, Y., A. D. Richmond, A. J. Ridley, and H. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182.en_US
dc.identifier.citedreferenceDonnelly, R. F. ( 1967 ), The solar flare radiation responsible for sudden frequency deviations, J. Geophys. Res., 101, 5247 – 5256, doi: 10.1029/95JA03676.en_US
dc.identifier.citedreferenceFejer, B. G., C. A. Gonzales, D. T. Farley, M. C. Kelley, and R. F. Woodman ( 1979 ), Equatorial electric fields during magnetically disturbed conditions: 1. The effect of the interplanetary magnetic field, J. Geophys. Res., 84, 5797 – 5802, doi: 10.1029/JA084iA10p05797.en_US
dc.identifier.citedreferenceFriedman, J. F., and F. A. Herrero ( 1982 ), Fabry‐Perot interferometer measurements of thermospheric neutral wind gradients and reversals at Arecibo, Geophys. Res. Lett., 9, 785 – 788, doi: 10.1029/GL009i007p00785.en_US
dc.identifier.citedreferenceGarriott, O. K., A. V. da Rosa, M. J. Davis, and J. O. G. Villard ( 1967 ), Solar flare effects in the ionosphere, J. Geophys. Res., 72, 6099 – 6103, doi: 10.1029/JZ072i023p06099.en_US
dc.identifier.citedreferenceGombosi, T. I. ( 1998 ), Physics of the Space Environment, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceGossard, E. E., and W. H. Hooke ( 1975 ), Waves in the Atmosphere, Elsevier Scientific Company, Amsterdam.en_US
dc.identifier.citedreferenceHernandez, G. ( 1986 ), Fabry‐Perot Interferometers, Cambridge Univ. Press, Cambridge, England.en_US
dc.identifier.citedreferenceHodges, R. R. ( 1969 ), Eddy diffusion coefficients due to instabilities in internal gravity waves, J. Geophys. Res., 74, 4087 – 4090.en_US
dc.identifier.citedreferenceHuang, C. S., and J. C. Foster ( 2005 ), Long‐duration penetration of the interplanetary electric field to the low‐latitude ionosphere during the main phase of magnetic storms, J. Geophys. Res., 110, A11309, doi: 10.1029/2005JA011202.en_US
dc.identifier.citedreferenceHuffman, R. E. ( 1969 ), Absorption cross‐sections of atmospheric gases for use in aeronomy, Can. J. Chem., 47, 1823 – 1834, doi: 10.1139/v69-298.en_US
dc.identifier.citedreferenceJacka, F. ( 1984 ), Application of Fabry‐Perot spectrometers for measurement of upper atmosphere temperatures and winds, Handbook for MAP, 13, 19 – 40, doi: 10.1007/BF00179215.en_US
dc.identifier.citedreferenceJones, T. B. ( 1971 ), VLF phase anomalies due to a solar X‐Ray flare, J. Atmos. Sol. Terr. Phys., 33, 963 – 965.en_US
dc.identifier.citedreferenceKan, J. R., and L. C. Lee ( 1979 ), Energy coupling function and solar wind‐magnetosphere dynamo, Geophys. Res. Lett., 6, 577 – 580, doi: 10.1029/GL006i007p00577.en_US
dc.identifier.citedreferenceKato, S. ( 1956 ), Horizontal wind systems in the ionospheric E‐region deduced from the dynamo theory of the geomagnetic S q variation 2. Rotating Earth, J. Geomagn. Geoelec., 8, 24 – 37.en_US
dc.identifier.citedreferenceKato, S. ( 1957 ), Horizontal wind systems in the ionospheric E‐region deduced from the dynamo theory of the geomagnetic S q variation 4, J. Geomagn. Geoelec., 9, 107 – 115.en_US
dc.identifier.citedreferenceKelley, M. C. ( 2009 ), The Earth's Ionosphere: Plasma Physics and Electrodynamics, Elsevier Inc., Burlington, Mass.en_US
dc.identifier.citedreferenceKelley, M. C., B. G. Fejer, and C. A. Gonzales ( 1979 ), An explanation for anomalous equatorial ionospheric electric field associated with a northward turning of the interplanetary field, Geophys. Res. Lett., 6, 301 – 304, doi: 10.1029/GL006i004p00301.en_US
dc.identifier.citedreferenceKikuchi, T., H. Luhr, K. Schlegel, H. Tachihara, M. SHinohara, and T. I. Kitamura ( 2000 ), Penetration of auroral electric fields to the equator during a substorm, J. Geophys. Res., 105, 23,251 – 23,261, doi: 10.1029/2000JA900016.en_US
dc.identifier.citedreferenceKundu, P. K., and I. M. Cohen ( 2008 ), Fluid Mechanics, 4th ed., Academic Press, Elsevier, Burlington, Mass.en_US
dc.identifier.citedreferenceLindzen, R. S. ( 1967 ), Thermally driven diurnal tide in the atmosphere, Q. J. R. Meteorol. Soc., 93, 18 – 42, doi: 10.1002/qj.49709339503.en_US
dc.identifier.citedreferenceLindzen, R. S. ( 1968 ), The application of classical atmospheric tidal theory, Proc. R. Soc. London, Ser. A., 303, 229 – 316.en_US
dc.identifier.citedreferenceLindzen, R. S. ( 1981 ), Turbulence and stress owing to gravity wave and tidal breakdown, J. Geophys. Res., 86, 9707 – 9714, doi: 10.1029/JC086iC10p09707.en_US
dc.identifier.citedreferenceLiu, H., H. Lühr, S. Watanabe, W. Köhler, and C. Manoj ( 2007 ), Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare, J. Geophys. Res., 112, A07305, doi: 10.1029/2007JA012313.en_US
dc.identifier.citedreferenceMaeda, K., and S. Kato ( 1966 ), Electrodynamics of the Ionosphere, Space Sci. Rev., 5, 57 – 79, doi: 10.1007/BF00179215.en_US
dc.identifier.citedreferenceMaruyama, N., A. D. Richmond, T. J. Fuller‐Rowell, M. V. Codrescu, S. Sazykin, F. R. Toffoletto, R. W. Spiro, and G. H. Millward ( 2008 ), Interaction between direct penetration and disturbance dynamo electric fields in the storm‐time equatorial ionosphere, Geophys. Res. Lett., 35, L18105, doi: 10.1029/2008GL035155.en_US
dc.identifier.citedreferenceMendillo, M., et al. ( 1974 ), Behavior of the ionospheric F region during the great solar flare of August 7, 1972, J. Geophys. Res., 79, 665 – 672, doi: 10.1029/JA079i004p00665.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.