Show simple item record

Influence of Atrophic Posterior Maxilla Ridge Height on Bone Density and Microarchitecture

dc.contributor.authorMonje, Albertoen_US
dc.contributor.authorMonje, Florencioen_US
dc.contributor.authorGonzález‐garcía, Raúlen_US
dc.contributor.authorSuarez, Fernandoen_US
dc.contributor.authorGalindo‐moreno, Pabloen_US
dc.contributor.authorGarcía‐nogales, Agustinen_US
dc.contributor.authorWang, Hom‐layen_US
dc.date.accessioned2015-02-19T15:40:28Z
dc.date.available2016-04-01T15:21:07Zen
dc.date.issued2015-02en_US
dc.identifier.citationMonje, Alberto; Monje, Florencio; González‐garcía, Raúl ; Suarez, Fernando; Galindo‐moreno, Pablo ; García‐nogales, Agustin ; Wang, Hom‐lay (2015). "Influence of Atrophic Posterior Maxilla Ridge Height on Bone Density and Microarchitecture." Clinical Implant Dentistry and Related Research (1): 111-119.en_US
dc.identifier.issn1523-0899en_US
dc.identifier.issn1708-8208en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110564
dc.description.abstractPurposeThere is limited evidence available on the influence of residual ridge height (RH) on bone density. Therefore, this study aimed to investigate the correlation between the atrophic posterior RH in the maxilla and its bone density as determined by microcomputed tomography (μ‐CT).Material and MethodsThirty‐two subjects with atrophic posterior maxilla of residual RH <8 mm were included in this study. A preoperative cone beam CT scan with a radiographic stent was taken for each patient. A bone core biopsy was thus obtained from the predetermined surgical site. Out of 32 biopsies, 27 were intact and sent for μ‐CT analysis.ResultsA statistically significant positive correlation between bone volumetric fraction (BV/TV) and RH was identified (r = 0.417, p = .03). A statistically significant negative correlation between trabecular pattern factor and RH was also found (r = −0.415, p = .03). The rest of the morphometric parameters analyzed did not have any significant correlation to RH.ConclusionBV/TV is potentially influenced by the residual bone height at the posterior maxilla. The lesser the RH, the lower the bone quantity and quality present.en_US
dc.publisherQuintessenceen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otheralveolar ridge augmentationen_US
dc.subject.othergraftingen_US
dc.subject.otherdental implanten_US
dc.subject.otherboneen_US
dc.subject.othermaxillary ridge augmentationen_US
dc.titleInfluence of Atrophic Posterior Maxilla Ridge Height on Bone Density and Microarchitectureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110564/1/cid12075.pdf
dc.identifier.doi10.1111/cid.12075en_US
dc.identifier.sourceClinical Implant Dentistry and Related Researchen_US
dc.identifier.citedreferenceGonzalez‐Garcia R, Monje F. The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT. Clin Oral Implants Res 2012. doi: 10.1111/j.1600‐0501.2011.02390.xen_US
dc.identifier.citedreferenceUlm C, Kneissel M, Schedle A, et al. Characteristic features of trabecular bone in edentulous maxillae. Clin Oral Implants Res 1999; 10: 459 – 467.en_US
dc.identifier.citedreferenceTrisi P, Rao W. Bone classification: clinical‐histomorphometric comparison. Clin Oral Implants Res 1999; 10: 1 – 7.en_US
dc.identifier.citedreferenceParfitt AM. Bone histomorphometry: proposed system for standardization of nomenclature, symbols, and units. Calcif Tissue Int 1988; 42: 284 – 286.en_US
dc.identifier.citedreferenceHahn M, Vogel M, Pompesius‐Kempa M, Delling G. Trabecular bone pattern factor – a new parameter for simple quantification of bone microarchitecture. Bone 1992; 13: 327 – 330.en_US
dc.identifier.citedreferenceHildebrand T, Ruegsegger P. Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1997; 1: 15 – 23.en_US
dc.identifier.citedreferenceCurrey JD. The many adaptations of bone. J Biomech 2003; 36: 1487 – 1495.en_US
dc.identifier.citedreferenceOdgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3‐D reconstructions. Bone 1993; 14: 173 – 182.en_US
dc.identifier.citedreferenceCompston JE. Bone density: BMC, BMD, or corrected BMD? Bone 1995; 16: 5 – 7.en_US
dc.identifier.citedreferenceMolly L. Bone density and primary stability in implant therapy. Clin Oral Implants Res 2006; 17 ( Suppl 2 ): 124 – 135.en_US
dc.identifier.citedreferenceNkenke E, Stelzle F. Clinical outcomes of sinus floor augmentation for implant placement using autogenous bone or bone substitutes: a systematic review. Clin Oral Implants Res 2009; 20 ( Suppl 4 ): 124 – 133.en_US
dc.identifier.citedreferenceMisch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999; 57: 700 – 706. Discussion 706–708.en_US
dc.identifier.citedreferenceRidaura‐Ruiz L, Figueiredo R, Guinot‐Moya R, et al. Accidental displacement of dental implants into the maxillary sinus: a report of nine cases. Clin Implant Dent Relat Res 2009; 11 ( Suppl 1 ): e38 – e45.en_US
dc.identifier.citedreferenceChiapasco M, Felisati G, Maccari A, Borloni R, Gatti F, Di Leo F. The management of complications following displacement of oral implants in the paranasal sinuses: a multicenter clinical report and proposed treatment protocols. Int J Oral Maxillofac Surg 2009; 38: 1273 – 1278.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Padial‐Molina M, Avila G, Rios HF, Hernandez‐Cortes P, Wang HL. Complications associated with implant migration into the maxillary sinus cavity. Clin Oral Implants Res 2012; 23: 1152 – 1160.en_US
dc.identifier.citedreferenceSummers RB. A new concept in maxillary implant surgery: the osteotome technique. Compendium 1994; 15: 152. 154–156, 158 passim; quiz 162.en_US
dc.identifier.citedreferenceRios HF, Avila G, Galindo P, Bratu E, Wang HL. The influence of remaining alveolar bone upon lateral window sinus augmentation implant survival. Implant Dent 2009; 18: 402 – 412.en_US
dc.identifier.citedreferenceUrban IA, Lozada JL. A prospective study of implants placed in augmented sinuses with minimal and moderate residual crestal bone: results after 1 to 5 years. Int J Oral Maxillofac Implants 2010; 25: 1203 – 1212.en_US
dc.identifier.citedreferenceAvila‐Ortiz G, Neiva R, Galindo‐Moreno P, Rudek I, Benavides E, Wang HL. Analysis of the influence of residual alveolar bone height on sinus augmentation outcomes. Clin Oral Implants Res 2012; 23: 1082 – 1088.en_US
dc.identifier.citedreferenceMisch CE. Maxillary sinus augmentation for endosteal implants: organized alternative treatment plans. Int J Oral Implantol 1987; 4: 49 – 58.en_US
dc.identifier.citedreferenceCawood JI, Howell RA. A classification of the edentulous jaws. Int J Oral Maxillofac Surg 1988; 17: 232 – 236.en_US
dc.identifier.citedreferenceSimion M, Fontana F, Rasperini G, Maiorana C. Long‐term evaluation of osseointegrated implants placed in sites augmented with sinus floor elevation associated with vertical ridge augmentation: a retrospective study of 38 consecutive implants with 1‐ to 7‐year follow‐up. Int J Periodontics Restorative Dent 2004; 24: 208 – 221.en_US
dc.identifier.citedreferenceWang HL, Katranji A. ABC sinus augmentation classification. Int J Periodontics Restorative Dent 2008; 28: 383 – 389.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Moreno‐Riestra I, Avila G, et al. Histomorphometric comparison of maxillary pristine bone and composite bone graft biopsies obtained after sinus augmentation. Clin Oral Implants Res 2010; 21: 122 – 128.en_US
dc.identifier.citedreferenceLindhe J, Bressan E, Cecchinato D, Corra E, Toia M, Liljenberg B. Bone tissue in different parts of the edentulous maxilla and mandible. Clin Oral Implants Res 2013. doi: 10.1111/clr.12064en_US
dc.identifier.citedreferencePommer B, Hof M, Fadler A, Gahleitner A, Watzek G, Watzak G. Primary implant stability in the atrophic sinus floor of human cadaver maxillae: impact of residual ridge height, bone density, and implant diameter. Clin Oral Implants Res 2012. doi: 10.1111/clr.12071en_US
dc.identifier.citedreferenceTatum H Jr. Maxillary and sinus implant reconstructions. Dental clinics of North America. 1986; 30: 207 – 229.en_US
dc.identifier.citedreferenceFeldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M. The direct examination of three‐dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 1989; 4: 3 – 11.en_US
dc.identifier.citedreferencePietrokovski J, Massler M. Alveolar ridge resorption following tooth extraction. J Prosthet Dent 1967; 17: 21 – 27.en_US
dc.identifier.citedreferenceMonje A, Chan HL, Fu JH, Suarez F, Galindo‐Moreno P, Wang HL. Are short dental implants (<10 mm) effective? A meta‐analysis on prospective clinical trials. J Periodontol 2012. doi: 10.1902/jop.2012.120328en_US
dc.identifier.citedreferencePommer B, Frantal S, Willer J, Posch M, Watzek G, Tepper G. Impact of dental implant length on early failure rates: a meta‐analysis of observational studies. J Clin Periodontol 2011; 38: 856 – 863.en_US
dc.identifier.citedreferenceBoyne PJ, Marx RE, Nevins M, et al. A feasibility study evaluating rhBMP‐2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent 1997; 17: 11 – 25.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Avila G, Fernandez‐Barbero JE, Mesa F, O'Valle‐Ravassa F, Wang HL. Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clin Oral Implants Res 2008; 19: 755 – 759.en_US
dc.identifier.citedreferenceMisch CE, Hoar J, Beck G, Hazen R, Misch CM. A bone quality‐based implant system: a preliminary report of stage I & stage II. Implant Dent 1998; 7: 35 – 42.en_US
dc.identifier.citedreferenceFriberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively placed Branemark dental implants: a study from stage 1 surgery to the connection of completed prostheses. Int J Oral Maxillofac Implants 1991; 6: 142 – 146.en_US
dc.identifier.citedreferenceEngquist B, Bergendal T, Kallus T, Linden U. A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. Int J Oral Maxillofac Implants 1988; 3: 129 – 134.en_US
dc.identifier.citedreferenceJaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5‐year analysis. J Periodontol 1991; 62: 2 – 4.en_US
dc.identifier.citedreferenceRebaudi A, Koller B, Laib A, Trisi P. Microcomputed tomographic analysis of the peri‐implant bone. Int J Periodontics Restorative Dent 2004; 24: 316 – 325.en_US
dc.identifier.citedreferenceZou W, Hunter N, Swain MV. Application of polychromatic microCT for mineral density determination. J Dent Res 2011; 90: 18 – 30.en_US
dc.identifier.citedreferenceGonzalez‐Garcia R, Monje F. Is micro‐computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clin Oral Implants Res 2012. doi: 10.1111/j.1600‐0501.2012.02478.xen_US
dc.identifier.citedreferenceBurghardt AJ, Issever AS, Schwartz AV, et al. High‐resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95: 5045 – 5055.en_US
dc.identifier.citedreferenceBonse U, Busch F. X‐ray computed microtomography (microCT) using synchrotron radiation (SR). Prog Biophys Mol Biol 1996; 65: 133 – 169.en_US
dc.identifier.citedreferenceSukovic P. Cone beam computed tomography in craniofacial imaging. Orthod Craniofac Res 2003; 6 ( Suppl 1 ): 31 – 36. Discussion 179–182.en_US
dc.identifier.citedreferenceLekholm U, Zarb GA. Patient selection and preparation. In: Branemark PI, Zarb GA, Albrektsson T, eds. Tissue‐integrated prostheses: osseointegration in clinical dentistry. Chicago, IL: Quintessence, 1985: 199 – 209.en_US
dc.identifier.citedreferenceMisch CE. Bone classification, training keys to implant success. Dent Today 1989; 8: 39 – 44.en_US
dc.identifier.citedreferenceAksoy U, Eratalay K, Tozum TF. The possible association among bone density values, resonance frequency measurements, tactile sense, and histomorphometric evaluations of dental implant osteotomy sites: a preliminary study. Implant Dent 2009; 18: 316 – 325.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.