Show simple item record

Atg23 and Atg27 Act at the Early Stages of Atg9 Trafficking in S. cerevisiae

dc.contributor.authorBackues, Steven K.en_US
dc.contributor.authorOrban, Daniel P.en_US
dc.contributor.authorBernard, Amélieen_US
dc.contributor.authorSingh, Kushalen_US
dc.contributor.authorCao, Yangen_US
dc.contributor.authorKlionsky, Daniel J.en_US
dc.date.accessioned2015-02-19T15:40:36Z
dc.date.available2016-04-01T15:21:07Zen
dc.date.issued2015-02en_US
dc.identifier.citationBackues, Steven K.; Orban, Daniel P.; Bernard, Amélie ; Singh, Kushal; Cao, Yang; Klionsky, Daniel J. (2015). "Atg23 and Atg27 Act at the Early Stages of Atg9 Trafficking in S. cerevisiae." Traffic 16(2): 172-190.en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110581
dc.publisherJohn Wiley & Sons A/Sen_US
dc.subject.otherautophagyen_US
dc.subject.othertraffickingen_US
dc.subject.othersortingen_US
dc.subject.otherphagophore assembly siteen_US
dc.subject.otherGolgien_US
dc.subject.otherCvt pathwayen_US
dc.subject.otherclusteringen_US
dc.titleAtg23 and Atg27 Act at the Early Stages of Atg9 Trafficking in S. cerevisiaeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110581/1/tra12240.pdf
dc.identifier.doi10.1111/tra.12240en_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceRavikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of pre‐autophagosomal structures. Nat Cell Biol 2010; 12: 747 – 757.en_US
dc.identifier.citedreferenceKakuta S, Yamamoto H, Negishi L, Kondo‐Kakuta C, Hayashi N, Ohsumi Y. Atg9 vesicles recruit vesicle‐tethering proteins Trs85 and Ypt1 to the autophagosome formation site. J Biol Chem 2012; 287: 44261 – 44269.en_US
dc.identifier.citedreferenceCao Y, Cheong H, Song H, Klionsky DJ. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J Cell Biol 2008; 182: 703 – 713.en_US
dc.identifier.citedreferenceCao Y, Nair U, Yasumura‐Yorimitsu K, Klionsky DJ. A multiple ATG gene knockout strain for yeast two‐hybrid analysis. Autophagy 2009; 5: 699 – 706.en_US
dc.identifier.citedreferenceKlionsky DJ, Cueva R, Yaver DS. Aminopeptidase I of Saccharomyces cerevisiae is localized to the vacuole independent of the secretory pathway. J Cell Biol 1992; 119: 287 – 299.en_US
dc.identifier.citedreferenceGeng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy‐related protein stoichiometry by fluorescence microscopy. J Cell Biol 2008; 182: 129 – 140.en_US
dc.identifier.citedreferenceNair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W‐L, Griffith J, Nag S, Wang K, Moss T, Baba M, McNew JA, Jiang X, Reggiori F, Melia TJ, et al. SNARE proteins are required for macroautophagy. Cell 2011; 146: 290 – 302.en_US
dc.identifier.citedreferenceAnitei M, Hoflack B. Exit from the trans‐Golgi network: from molecules to mechanisms. Curr Opin Cell Biol 2011; 23: 443 – 451.en_US
dc.identifier.citedreferenceBagnat M, Chang A, Simons K. Plasma membrane proton ATPase Pma1p requires raft association for surface delivery in yeast. Mol Biol Cell 2001; 12: 4129 – 4138.en_US
dc.identifier.citedreferenceDelacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R. Apical sorting by galectin‐3‐dependent glycoprotein clustering. Traffic 2007; 8: 379 – 388.en_US
dc.identifier.citedreferenceHe C, Baba M, Cao Y, Klionsky DJ. Self‐interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 2008; 19: 5506 – 5516.en_US
dc.identifier.citedreferenceYoung ARJ, Chan EYW, Hu XW, Köchl R, Crawshaw SG, High S, Hailey DW, Lippincott‐Schwartz J, Tooze SA. Starvation and ULK1‐dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 2006; 119: 3888 – 3900.en_US
dc.identifier.citedreferenceOrsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM, Tooze SA. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 2012; 23: 1860 – 1873.en_US
dc.identifier.citedreferencePuri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013; 154: 1285 – 1299.en_US
dc.identifier.citedreferencePopovic D, Dikic I. TBC1D5 and the AP2 complex regulate ATG9 trafficking and initiation of autophagy. EMBO Rep 2014; 15: 392 – 401.en_US
dc.identifier.citedreferencePopovic D, Akutsu M, Novak I, Harper JW, Behrends C, Dikic I. Rab GTPase‐activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 2012; 32: 1733 – 1744.en_US
dc.identifier.citedreferenceCarpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 2006; 7: R100.en_US
dc.identifier.citedreferenceSchneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671 – 675.en_US
dc.identifier.citedreferenceNoda T, Kim J, Huang W‐P, Baba M, Tokunaga C, Ohsumi Y, Klionsky DJ. Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathways. J Cell Biol 2000; 148: 465 – 480.en_US
dc.identifier.citedreferenceStrømhaug PE, Reggiori F, Guan J, Wang C‐W, Klionsky DJ. Atg21 Is a phosphoinositide binding protein required for efficient lipidation and localization of Atg8 during uptake of aminopeptidase I by selective autophagy. Mol Biol Cell 2004; 15: 3553 – 3566.en_US
dc.identifier.citedreferenceGueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre‐mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 2002; 30: e23.en_US
dc.identifier.citedreferenceLongtine MS, Mckenzie A III, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998; 14: 953 – 961.en_US
dc.identifier.citedreferenceSheff MA, Thorn KS. Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 2004; 21: 661 – 670.en_US
dc.identifier.citedreferenceJames P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two‐hybrid selection in yeast. Genetics 1996; 144: 1425 – 1436.en_US
dc.identifier.citedreferenceRobinson JS, Klionsky DJ, Banta LM, Emr SD. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol Cell Biol 1988; 8: 4936 – 4948.en_US
dc.identifier.citedreferenceKanki T, Wang K, Baba M, Bartholomew CR, Lynch‐Day MA, Du Z, Geng J, Mao K, Yang Z, Yen W‐L, Klionsky DJ. A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 2009; 20: 4730 – 4738.en_US
dc.identifier.citedreferenceMeijer WH, van der Klei IJ, Veenhuis M, Kiel JAKW. ATG genes involved in non‐selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism‐specific genes. Autophagy 2007; 3: 106 – 116.en_US
dc.identifier.citedreferenceMizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self‐digestion. Nature 2008; 451: 1069 – 1075.en_US
dc.identifier.citedreferenceSeglen PO. Regulation of autophagic protein degradation in isolated liver cells. In: Glaumann H, Ballard FJ, editors. Lysosomes: Their Role in Protein Breakdown. London: Academ; 1987, pp. 371 – 414.en_US
dc.identifier.citedreferenceBaba M, Takeshige K, Baba N, Ohsumi Y. Ultrastructural analysis of the autophagic process in yeast: detection of autophagosomes and their characterization. J Cell Biol 1994; 124: 903 – 913.en_US
dc.identifier.citedreferenceYen W‐L, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, Hughson FM, Baba M, Klionsky DJ. The conserved oligomeric Golgi complex is involved in double‐membrane vesicle formation during autophagy. J Cell Biol 2010; 188: 101 – 114.en_US
dc.identifier.citedreferenceMari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9‐containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010; 190: 1005 – 1022.en_US
dc.identifier.citedreferenceWang K, Yang Z, Liu X, Mao K, Nair U, Klionsky DJ. Phosphatidylinositol 4‐kinases are required for autophagic membrane trafficking. J Biol Chem 2012; 287: 37964 – 37972.en_US
dc.identifier.citedreferenceYamamoto H, Kakuta S, Watanabe TM, Kitamura A, Sekito T, Kondo‐Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol 2012; 198: 219 – 233.en_US
dc.identifier.citedreferenceReggiori F, Tucker KA, Stromhaug PE, Klionsky DJ. The Atg1‐Atg13 complex regulates Atg9 and Atg23 retrieval transport from the pre‐autophagosomal structure. Dev Cell 2004; 6: 79 – 90.en_US
dc.identifier.citedreferenceKim J, Kamada Y, Stromhaug PE, Guan J, Hefner‐Gravink A, Baba M, Scott SV, Ohsumi Y, Dunn WA, Klionsky DJ. Cvt9/Gsa9 functions in sequestering selective cytosolic cargo destined for the vacuole. J Cell Biol 2001; 153: 381 – 396.en_US
dc.identifier.citedreferenceHe C, Song H, Yorimitsu T, Monastyrska I, Yen W‐L, Legakis JE, Klionsky DJ. Recruitment of Atg9 to the preautophagosomal structure by Atg11 is essential for selective autophagy in budding yeast. J Cell Biol 2006; 175: 925 – 935.en_US
dc.identifier.citedreferenceSekito T, Kawamata T, Ichikawa R, Suzuki K, Ohsumi Y. Atg17 recruits Atg9 to organize the pre‐autophagosomal structure. Genes Cells 2009; 14: 525 – 538.en_US
dc.identifier.citedreferenceTucker KA, Reggiori F, Dunn WA, Klionsky DJ. Atg23 is essential for the cytoplasm to vacuole targeting pathway and efficient autophagy but not pexophagy. J Biol Chem 2003; 278: 48445 – 48452.en_US
dc.identifier.citedreferenceLegakis JE, Yen W‐L, Klionsky DJ. A cycling protein complex required for selective autophagy. Autophagy 2007; 3: 422 – 432.en_US
dc.identifier.citedreferenceYen W‐L, Legakis JE, Nair U, Klionsky DJ. Atg27 Is required for autophagy‐dependent cycling of Atg9. Mol Biol Cell 2007; 18: 581 – 593.en_US
dc.identifier.citedreferenceNazarko TY, Huang J, Nicaud J‐M, Klionsky DJ, Sibirny AA. Trs85 is required for macroautophagy, pexophagy and cytoplasm to vacuole targeting in Yarrowia lipolytica and Saccharomyces cerevisiae. Autophagy 2005; 1: 37 – 45.en_US
dc.identifier.citedreferenceLynch‐Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro‐Novick S, Klionsky DJ. Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci 2010; 107: 7811 – 7816.en_US
dc.identifier.citedreferenceLipatova Z, Belogortseva N, Zhang XQ, Kim J, Taussig D, Segev N. Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci 2012; 109: 6981 – 6986.en_US
dc.identifier.citedreferenceMonastyrska I, He C, Geng J, Hoppe AD, Li Z, Klionsky DJ. Arp2 links autophagic machinery with the actin cytoskeleton. Mol Biol Cell 2008; 19: 1962 – 1975.en_US
dc.identifier.citedreferenceBackues SK, Klionsky DJ. Atg11: a Rab‐dependent, coiled‐coil membrane protein that acts as a tether for autophagy. Autophagy 2012; 8: 1275 – 1278.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.