Show simple item record

A hemolytic anti‐LKE associated with a rare LKE‐negative, “weak P” red blood cell phenotype: alloanti‐LKE and alloanti‐P recognize galactosylgloboside and monosialogalactosylgloboside (LKE) antigens

dc.contributor.authorCooling, Lauraen_US
dc.contributor.authorDake, Louann R.en_US
dc.contributor.authorHaverty, Donnaen_US
dc.contributor.authorMullis, Nancyen_US
dc.contributor.authorEllis, Susieen_US
dc.contributor.authorShayman, Jamesen_US
dc.contributor.authorJudd, W. Johnen_US
dc.date.accessioned2015-02-19T15:40:37Z
dc.date.available2016-03-02T19:36:55Zen
dc.date.issued2015-01en_US
dc.identifier.citationCooling, Laura; Dake, Louann R.; Haverty, Donna; Mullis, Nancy; Ellis, Susie; Shayman, James; Judd, W. John (2015). "A hemolytic anti‐LKE associated with a rare LKE‐negative, “weak P” red blood cell phenotype: alloanti‐LKE and alloanti‐P recognize galactosylgloboside and monosialogalactosylgloboside (LKE) antigens." Transfusion (1): 115-128.en_US
dc.identifier.issn0041-1132en_US
dc.identifier.issn1537-2995en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110583
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAmerican Association of Blood Banksen_US
dc.titleA hemolytic anti‐LKE associated with a rare LKE‐negative, “weak P” red blood cell phenotype: alloanti‐LKE and alloanti‐P recognize galactosylgloboside and monosialogalactosylgloboside (LKE) antigensen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110583/1/trf12772.pdf
dc.identifier.doi10.1111/trf.12772en_US
dc.identifier.sourceTransfusionen_US
dc.identifier.citedreferenceStroud MR, Stapleton AE, Levery SB. The P histo‐blood group‐related glycosphingolipid sialosyl galactosyl globoside as a preferred binding receptor for uropathogenic Escherichia coli: isolation and structural characterization from human kidney. Biochemistry 1998; 37: 17420 ‐ 17428.en_US
dc.identifier.citedreferenceCooling L, Hwang D. Monoclonal antibody B2, a marker of neuroendocrine sympathoadrenal precursors, recognizes the Luke (LKE) antigen. Transfusion 2005; 45: 709 ‐ 716.en_US
dc.identifier.citedreferenceStapleton AE, Stroud MR, Hakomori S, et al. The globoseries glycosphingolipid sialosyl galactosyl globoside is found in urinary tract tissues and is a preferred receptor in vitro for uropathogenic Escherichia coli expressing pap‐encoded adhesions. Infect Immun 1998; 66: 3856 ‐ 3861.en_US
dc.identifier.citedreferenceKarr JF, Nowicki BJ, Truong DL, et al. Pap‐2‐encoded fimbriae adhere to the P blood group‐related glycosphingolipid stage‐specific embryonic antigen 4 in the human kidney. Infect Immun 1990; 58: 4055 ‐ 4062.en_US
dc.identifier.citedreferenceIto A, Saito S, Masuko T, et al. Monoclonal antibody (5F3) defining renal cell carcinoma‐associated antigen disialosyl globopentaosylceramide (V3NeuAcIV6NeuAcGb5), and distribution pattern of the antigen in tumor and normal tissues. Glyconj J 2001; 18: 475 ‐ 485.en_US
dc.identifier.citedreferenceSaito S, Levery SB, Salyan MEK, et al. Common tetrasaccharide epitope NeuAcα2‐3Galβ1‐3(NeuAcα2‐6)GalNAc, presented by different carrier glycosylceramides or O‐linked peptides, is recognized by different antibodies and ligands having distinct specificities. J Biol Chem 1994; 269: 5644 ‐ 5652.en_US
dc.identifier.citedreferenceGillard BK, Jones MA, Marcus DM. Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells. Arch Biochem Biophys 1987; 256: 435 ‐ 445.en_US
dc.identifier.citedreferenceCooling LL, Zhang D, Koerner TA. Human platelets express gangliosides with LKE activity and ABH blood group activity. Transfusion 2001; 41: 504 ‐ 516.en_US
dc.identifier.citedreferenceSteelant WF, Kawakami Y, Ito A, et al. Monosialyl‐Gb5 organized with cSrc and FAK in GEM of human breast carcinoma MCF‐7 cells defines their invasive properties. FEBS Lett 2002; 531: 93 ‐ 98.en_US
dc.identifier.citedreferenceDraper JS, Pigott C, Thomson JA, et al. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 2002; 200: 249 ‐ 258.en_US
dc.identifier.citedreferenceLawrie CH, Marafioti T, Hatton CSR, et al. Cancer‐associated carbohydrate identification in Hodgkin's lymphoma by carbohydrate array profiling. Int J Cancer 2006; 118: 3161 ‐ 3166.en_US
dc.identifier.citedreferenceKalisiak A, Minniti JG, Oosterwijk E, et al. Neutral glycosphingolipid expression in B‐cell neoplasm. Int J Cancer 1991; 49: 837 ‐ 845.en_US
dc.identifier.citedreferenceO'Boyle KP, Freeman K, Kalisiak A, et al. Patterns of ganglioside expression in B cell cell neoplasms. Leuk Lymphoma 1996; 21: 255 ‐ 266.en_US
dc.identifier.citedreferenceMeyer zum Buschenfelde C, Feuerstacke Y, Gotze KS, et al. GM1 expression of non‐Hodgkin's lymphoma determines susceptibility to rituximab treatment. Cancer Res 2008; 68: 5414 ‐ 5422.en_US
dc.identifier.citedreferenceNoguchi R, Shinomiya N, Nagai K, et al. Induction of suppressor T cells by anti‐globoside antibodies in cancer sera. Jpn J Clin Oncol 1983; 13: 335 ‐ 342.en_US
dc.identifier.citedreferenceSmorodin EP, Kurtenkov OA, Sergeyev BL, et al. The relation of serum anti‐(βGalNAc) and para‐Forssman disaccharide IgG levels to the progression and histological grading of gastrointestinal cancer. Exp Oncol 2007; 29: 61 ‐ 66.en_US
dc.identifier.citedreferenceWang C‐C, Huang Y‐L, Ren C‐T, et al. Glycan microarray of globo‐H and related structures for quantitative analysis of breast cancer. Proc Natl Acad Sci U S A 2008; 105: 11661 ‐ 11666.en_US
dc.identifier.citedreferenceSchrump DS, Furukawa K, Yamaguchi H, et al. Recognition of galactosylgloboside derived from patients with primary lung cancer. Proc Natl Acad Sci U S A 1988; 85: 4441 ‐ 4445.en_US
dc.identifier.citedreferenceJacob F, Goldstein DR, Bovin NV, et al. Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array. Int J Cancer 2011; 130: 138 ‐ 146.en_US
dc.identifier.citedreferenceHansson GC, Wazniowska K, Rock JA, et al. The glycosphingolipid composition of the placenta of a blood group P fetus deliverd by a blood group P 1 k woman and analysis of the anti‐globoside antibodies in maternal serum. Arch Biochem Biophys 1988; 260: 168 ‐ 176.en_US
dc.identifier.citedreferenceKannagi R, Cochran NA, Ishigami F, et al. Stage‐specific embryonic antigens (SSEA‐3 and ‐4) are epitopes of a unique globo‐series ganglioside isolated from human teratocarcinoma cells. EMBO J 1983; 2: 2355 ‐ 2361.en_US
dc.identifier.citedreferenceTippett P, Andrews P, Knowles BB, et al. Red cell antigens P (globoside) and Luke: identification by monoclonal antibodies defining the murine stage‐specific embryonic antigens −3 and ‐4 (SSEA‐3 and SSEA‐4). Vox Sang 1986; 51: 53 ‐ 56.en_US
dc.identifier.citedreferenceTippet P. Contributions of monoclonal antibodies to understanding one new and some old blood group systems. Arlington (VA): American Association of Blood Banks; 1986.en_US
dc.identifier.citedreferenceCooling L, Kelley K. Inverse expression of P k and Luke blood group antigens on human RBCs. Transfusion 2001; 41: 898 ‐ 907.en_US
dc.identifier.citedreferenceTippett P, Sanger R, Race RR, et al. An agglutinin associated with the P and ABO blood group systems. Vox Sang 1965; 10: 269 ‐ 280.en_US
dc.identifier.citedreferenceMoller B, Jorgensen J. Phenotype frequency of LKE in the Danish population. Hum Hered 1988; 38: 375 ‐ 377.en_US
dc.identifier.citedreferenceBruce M, Watt A, Gabra GS, et al. LKE red cell antigen and its relationship to P 1 and P k: serological study of a large family. Vox Sang 1988; 33: 237 ‐ 240.en_US
dc.identifier.citedreferenceKundu SK, Evans A, Rizvi J, et al. A new P k phenotype in the P blood group system. J Immunogenet 1980; 7: 431 ‐ 439.en_US
dc.identifier.citedreferenceStapleton A, Nudelman E, Clausen H, et al. Binding of uropathogenic E. coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo‐blood group secretor status. J Clin Invest 1992; 90: 965 ‐ 972.en_US
dc.identifier.citedreferenceRace RR, Sanger R. Blood groups in man. 6th ed. Oxford: Blackwell Scientific Publications; 1965.en_US
dc.identifier.citedreferenceKundu SK, Steane SM, Bloom JEC, et al. Abnormal glycolipid composition of erythrocytes with a weak P phenotype. Vox Sang 1978; 35: 160 ‐ 167.en_US
dc.identifier.citedreferenceRoback JD, editor. Technical manual. 17th ed. Bethesda (MD): American Association of Blood Banks; 2011.en_US
dc.identifier.citedreferenceJudd WJ, Johnson ST, Storry JR, editors. Judd's methods in immunohematology. 3rd ed. Bethseda (MD): American Association of Blood Banks Press; 2008.en_US
dc.identifier.citedreferenceKannagi R, Levery SB, Ishigami F, et al. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage‐specific embryonic antigen 3. J Biol Chem 1983; 258: 8934 ‐ 8942.en_US
dc.identifier.citedreferenceFenderson BA, Nichols EJ, Clausen H, et al. A monoclonal antibody defining a binary N‐acetyl‐lactosaminyl structure in lactoisooctaosyl ceramide. Mol Immunol 1986; 23: 747 ‐ 754.en_US
dc.identifier.citedreferenceClegg S. Cloning of genes determining the production of mannose‐resistant fimbriae in a uropathogenic strain of Escherichia coli belonging to serogroup O6. Infect Immun 1985; 38: 739 ‐ 744.en_US
dc.identifier.citedreferenceSerum, Cells and Rare Fluids Exchange (SCARF). [cited 2013 Jan 30]. Available from: http://scarfex.jove.prohosting.com/contact.htmlen_US
dc.identifier.citedreferenceCooling L. A new look at an old case: an auto‐anti‐P with pseudo‐LKE activity. Int J Blood Transfus Immunohematol 2013; 2: 11 ‐ 21.en_US
dc.identifier.citedreferenceMarsh WL. Scoring of hemagglutination reactions. Transfusion 1872; 12: 352 ‐ 353.en_US
dc.identifier.citedreferenceJudd WJ, Cooling L. Novel application of the gel test: detection of microbial‐induced hemagglutination. Vox Sang 2004; 87 ( S ): S17.en_US
dc.identifier.citedreferenceLedeen RW, Yu RK. Gangliosides: structure, isolation and analysis. In: Ginsberg V, editor. Methods in enzymology, vol. 83. New York: Academic Press; 1982. p. 139 ‐ 191.en_US
dc.identifier.citedreferenceSchnaar RL, Needham LK. Thin layer chromatography of glycosphingolipids. In: Lennarz WJ, Hart GW, editors. Methods in enzymology, vol. 230. New York: Academic Press; 1994. p. 371 ‐ 389.en_US
dc.identifier.citedreferenceCooling LLW, Zhang D‐S, Naides SJ, et al. Glycosphingolipid expression in acute nonlymphocytic leukemia: common expression of shiga toxin and parvovirus B19 receptors on early myeloblasts. Blood 2003; 101: 711 ‐ 721.en_US
dc.identifier.citedreferenceCooling LL, Zhang DS, Walker KW, et al. Detection in human blood platelets of sialyl Lewis X gangliosides: potential ligands for CD62 and other selectins. Glycobiology 1995; 5: 571 ‐ 581.en_US
dc.identifier.citedreferenceKundu SK, Suzuki A, Sabo B, et al. Erythrocyte glycosphingolipids of four siblings with the rare blood group p phenotype and their parents. J Immunogenet 1981; 8: 357 ‐ 365.en_US
dc.identifier.citedreferenceYiu SCK, Lingwood CA. Polyisobutylmethacrylate modifies glycolipid binding specificity of verotoxin 1 in thin‐layer chromatogram overlay procedures. Anal Biochem 1992; 202: 188 ‐ 192.en_US
dc.identifier.citedreferenceGallegos KM, Conrady DG, Karve SS, et al. Shiga toxin binding to glycolipids and glycans. Plos ONE 2012; 7: e30368 ‐ 10.en_US
dc.identifier.citedreferenceFlechter KS, Bremer IG, Schwarting GA. P blood group regulation of glycosphingolipid levels in human erythrocytes. J Biol Chem 1979; 254: 11196 ‐ 11198.en_US
dc.identifier.citedreferenceBierbach E, Yu RK. Multi‐enzyme kinetic analysis of glycolipid biosynthesis. Biochim Biophys Acta 1999; 1432: 113 ‐ 124.en_US
dc.identifier.citedreferenceKannagi R, Papyannopoulou T, Nakamoto B, et al. Carbohydrate antigen profiles of human erythroleukemia cell lines HEL and K562. Blood 1983; 62: 1230 ‐ 1241.en_US
dc.identifier.citedreferenceWatanabe K, Powell ME, Hakomori S‐I. Isolation and characterization of gangliosides with a new sialosyl linkage and core structures. J Biol Chem 1979; 254: 8223 ‐ 8229.en_US
dc.identifier.citedreferenceMuthing J, Spanbroek R, Peter‐Katalinic J, et al. Isolation and structural characterization of fucosylated gangliosides with linear poly‐N‐acetyllactosaminyl chains from human granulocytes. Glycobiology 1996; 6: 147 ‐ 156.en_US
dc.identifier.citedreferenceKatagiri YU, Ohmi K, Katagiri C, et al. Prominent immunogenicity of monosialosyl galactosylgloboside, carrying a stage‐specific embryonic antigen‐4 (SSEA‐4) epitope in the ACHN human renal tubular cell line—a simple method for producing monoclonal antibodies against detergent‐insoluble microdomains/raft. Glyconj J 2001; 18: 347 ‐ 353.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.