Show simple item record

Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations

dc.contributor.authorWang, Kaitien_US
dc.contributor.authorLin, Ching‐hueien_US
dc.contributor.authorWang, Lu‐yinen_US
dc.contributor.authorHada, Tohruen_US
dc.contributor.authorNishimura, Yukitoshien_US
dc.contributor.authorTurner, Drew L.en_US
dc.contributor.authorAngelopoulos, Vassilisen_US
dc.date.accessioned2015-02-19T15:40:46Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-02-19T15:40:46Z
dc.date.issued2014-12en_US
dc.identifier.citationWang, Kaiti; Lin, Ching‐huei ; Wang, Lu‐yin ; Hada, Tohru; Nishimura, Yukitoshi; Turner, Drew L.; Angelopoulos, Vassilis (2014). "Pitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observations." Journal of Geophysical Research: Space Physics 119(12): 9747-9760.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110605
dc.description.abstractChanges in pitch angle distributions of electrons with energies from a few eV to 1 MeV at dipolarization sites in Earth's magnetotail are investigated statistically to determine the extent to which adiabatic acceleration may contribute to these changes. Forty‐two dipolarization events from 2008 and 2009 observed by Time History of Events and Macroscale Interactions during Substorms probes covering the inner plasma sheet from 8 RE to 12 RE during geomagnetic activity identified by the AL index are analyzed. The number of observed events with cigar‐type distributions (peaks at 0° and 180°) decreases sharply below 1 keV after dipolarization because in many of these events, electron distributions became more isotropized. From above 1 keV to a few tens of keV, however, the observed number of cigar‐type events increases after dipolarization and the number of isotropic events decreases. These changes can be related to the ineffectiveness of Fermi acceleration below 1 keV (at those energies, dipolarization time becomes comparable to electron bounce time). Model‐calculated pitch angle distributions after dipolarization with the effect of betatron and Fermi acceleration tested indicate that these adiabatic acceleration mechanisms can explain the observed patterns of event number changes over a large range of energies for cigar events and isotropic events. Other factors still need to be considered to assess the observed increase in cigar events around 2 keV. Indeed, preferential directional increase/loss of electron fluxes, which may contribute to the formation of cigar events, was observed. Nonadiabatic processes to accelerate electrons in a parallel direction may also be important for future study.Key PointsPitch angle distributions of electrons up to MeV at tailside are analyzedChanges in the numbers of observed cigar and isotropic events are connectedAdiabatic accelerations can explain these changes over a large range of energyen_US
dc.publisherConsultants Bureauen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherelectron pitch angle distributionsen_US
dc.subject.otherTHEMISen_US
dc.subject.otherdipolarizationen_US
dc.titlePitch angle distributions of electrons at dipolarization sites during geomagnetic activity: THEMIS observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110605/1/jgra51465.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110605/2/jgra51465-sup-0002-TableS1.pdf
dc.identifier.doi10.1002/2014JA020176en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, X.‐Z. Zhou, X.‐J. Zhang, S. Li, F. Plaschke, and J. Bonnell ( 2011 ), A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 116, A05216, doi: 10.1029/2010JA016316.en_US
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, M. André, and A. Vaivads ( 2011 ), Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 38, L16104, doi: 10.1029/2011GL048528.en_US
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. André, and S. Y. Huang ( 2012a ), Electric structure of dipolarization front at sub‐proton scale, Geophys. Res. Lett., 39, L06105, doi: 10.1029/2012GL051274.en_US
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. André, V. A. Sergeev, S. Y. Huang, E. A. Kronberg, and P. W. Daly ( 2012b ), Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview, J. Geophys. Res., 117, A12221, doi: 10.1029/2012JA018141.en_US
dc.identifier.citedreferenceGabrielse, C., V. Angelopoulos, A. Runov, and D. L. Turner ( 2012 ), The effects of transient, localized electric fields on equatorial electron acceleration and transport toward the inner magnetosphere, J. Geophys. Res., 117, A10213, doi: 10.1029/2012JA017873.en_US
dc.identifier.citedreferenceGabrielse, C., V. Angelopoulos, A. Runov, and D. L. Turner ( 2014 ), Statistical characteristics of particle injections throughout the equatorial magnetotail, J. Geophys. Res. Space Physics, 119, 2512 – 2535, doi: 10.1002/2013JA019638.en_US
dc.identifier.citedreferenceGrigorenko, E. E., R. Koleva, and J.‐A. Sauvaud ( 2012 ), On the problem of Plasma Sheet Boundary Layer identification from plasma moments in Earth's magnetotail, Ann. Geophys., 30, 1331 – 1343, doi: 10.5194/angeo-30-1331-2012.en_US
dc.identifier.citedreferenceHada, T., A. Nishida, T. Teresawa, and E. W. Hones Jr. ( 1981 ), Bi‐Directional Electron Pitch Angle Anisotropy in the Plasma Sheet, J. Geophys. Res., 86 ( A13 ), 11,211 – 11,224, doi: 10.1029/JA086iA13p11211.en_US
dc.identifier.citedreferenceHoshino, M., T. Mukai, T. Terasawa, and I. Shinohara ( 2001 ), Suprathermal electron acceleration in magnetic reconnection, J. Geophys. Res., 106 ( A11 ), 25,979 – 25,997, doi: 10.1029/2001JA900052.en_US
dc.identifier.citedreferenceHuang, S. Y., M. Zhou, X. H. Deng, Z. G. Yuan, Y. Pang, Q. Wei, W. Su, H. M. Li, and Q. Q. Wang ( 2012a ), Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster, Ann. Geophys., 30, 97 – 107, doi: 10.5194/angeo-30-97-2012.en_US
dc.identifier.citedreferenceHuang, S. Y., et al. ( 2012b ), Electron acceleration in the reconnection diffusion region: Cluster observations, Geophys. Res. Lett., 39, L11103, doi: 10.1029/2012GL051946.en_US
dc.identifier.citedreferenceKivelson, M. G., T. A. Farley, and M. P. Aubry ( 1973 ), Satellite studies of magnetospheric substorms on August 15, 1968: 5. Energetic electrons, spatial boundaries, and wave‐particle interactions at Ogo 5, J. Geophys. Res., 78 ( 16 ), 3079 – 3092, doi: 10.1029/JA078i016p03079.en_US
dc.identifier.citedreferenceKlida, M. M., and T. A. Fritz ( 2013 ), Characterising electron butterfly pitch angle distributions in the magnetosphere through observations and simulations, Ann. Geophys., 31, 305 – 314, doi: 10.5194/angeo-31-305-2013.en_US
dc.identifier.citedreferenceLe Contel, O., et al. ( 2009 ), Quasi‐parallel whistler mode waves observed by THEMIS during near‐earth dipolarizations, Ann. Geophys., 27, 2259 – 2275, doi: 10.5194/angeo-27-2259-2009.en_US
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, C. Gabrielse, X.‐Z. Zhou, D. Turner, and F. Plaschke ( 2013 ), Electron fluxes and pitch‐angle distributions at dipolarization fronts: THEMIS multipoint observations, J. Geophys. Res Space Physics., 118, 744 – 755, doi: 10.1002/jgra.50121.en_US
dc.identifier.citedreferenceSergeev, V. A., W. Baumjohann, and K. Shiokawa ( 2001 ), Bi‐directional electron distributions associated with near‐tail flux transport, Geophys. Res. Lett., 28 ( 19 ), 3813 – 3816, doi: 10.1029/2001GL013334.en_US
dc.identifier.citedreferenceShiokawa, K., W. Baumjohann, and G. Paschmann ( 2003 ), Bi‐directional electrons in the near‐Earth plasma sheet, Ann. Geophys., 21, 1497.en_US
dc.identifier.citedreferenceSigsbee, K., Slavin, J. A., Lepping, R. P., Szabo, A., Øieroset, M., Kaiser, M. L., Reiner, M. J., and Singer, H. J. ( 2005 ), Statistical and superposed epoch study of dipolarization events using data from Wind perigee passes, Ann. Geophys., 23, 831 – 851.en_US
dc.identifier.citedreferenceSmets, R., D. Delcourt, J. A. Sauvaud, and P. Koperski ( 1999 ), Electron pitch angle distributions following the dipolarization phase of a substorm: Interball‐Tail observations and modeling, J. Geophys. Res., 104 ( A7 ), 14,571 – 14,581, doi: 10.1029/1998JA900162.en_US
dc.identifier.citedreferenceWalt, M. ( 2005 ), Introduction to Geomagnetically Trapped Radiation, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceWang, R., Q. Lu, C. Huang, and S. Wang ( 2010 ), Multispacecraft observation of electron pitch angle distributions in magnetotail reconnection, J. Geophys. Res., 115, A01209, doi: 10.1029/2009JA014553.en_US
dc.identifier.citedreferenceWest, H. I., Jr., R. M. Buck, and J. R. Walton ( 1973 ), Electron pitch angle distributions throughout the magnetosphere as observed on Ogo 5, J. Geophys. Res., 78 ( 7 ), 1064 – 1081, doi: 10.1029/JA078i007p01064.en_US
dc.identifier.citedreferenceWu, P., T. A. Fritz, B. Larvaud, and E. Lucek ( 2006 ), Substorm associated magnetotail energetic electrons pitch angle evolutions and flow reversals: Cluster observation, Geophys. Res. Lett., 33, L17101, doi: 10.1029/2006GL028297.en_US
dc.identifier.citedreferenceZheng, H., S. Y. Fu, Q. G. Zone, Z. Y. Pu, Y. F. Wang, and G. J. Parks ( 2012 ), Observations of ionospheric electron beams in the plasma sheet, Phys. Rev. Lett., 109, 205001, doi: 10.1103/PhysRevLett.109.205001.en_US
dc.identifier.citedreferenceImada, S., R. Nakamura, P. W. Daly, M. Hoshino, W. Baumjohann, S. Mühlbachler, A. Balogh, and H. Rème ( 2007 ), Energetic electron acceleration in the downstream reconnection outflow region, J. Geophys. Res., 112, A03202, doi: 10.1029/2006JA011847.en_US
dc.identifier.citedreferenceAbel, G. A., A. N. Fazakerley, and A. D. Johnstone ( 2002 ), Statistical distributions of field‐aligned electron events in the near‐equatorial magnetosphere observed by the Low Energy Plasma Analyzer on CRRES, J. Geophys. Res., 107 ( A11 ), 1393, doi: 10.1029/2001JA005073.en_US
dc.identifier.citedreferenceAngelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russell, W. Baumjohann, W. C. Feldman, and J. T. Gosling ( 1994 ), Statistical characteristics of bursty bulk flow events, J. Geophys. Res., 99 ( A11 ), 21,257 – 21,280, doi: 10.1029/94JA01263.en_US
dc.identifier.citedreferenceAngelopoulos, V., et al. ( 2008 ), Tail reconnection triggering substorm onset, Science, 321 ( 5891 ), 931 – 935, doi: 10.1126/science.1160495.en_US
dc.identifier.citedreferenceApatenkov, S. V., et al. ( 2007 ), Multi‐spacecraft observation of plasma dipolarization/injection in the inner magnetosphere, Ann. Geophys., 25, 801 – 814.en_US
dc.identifier.citedreferenceAsano, Y., et al. ( 2010 ), Electron acceleration signatures in the magnetotail associated with substorms, J. Geophys. Res., 115, A05215, doi: 10.1029/2009JA014587.en_US
dc.identifier.citedreferenceAshour‐Abdalla, M., M. El‐Alaoui, M. L. Goldsten, M. Zhou, D. Schriver, R. Richard, R. Walker, M. G. Kivelson, and K.‐J. Hwang ( 2011 ), Observations and simulations of non‐local acceleration of electrons in magnetotail magnetic reconnection events, Nat. Phys., doi: 10.1038/NPHYS1903.en_US
dc.identifier.citedreferenceÅsnes, A., R. W. Friedel, J. Stadsnes, M. Thomsen, N. Østgaard, and T. Cayton ( 2005 ), Statistical pitch angle properties of substorm‐injected electron clouds and their relation to dawnside energetic electron precipitation, J. Geophys. Res., 110, A05207, doi: 10.1029/2004JA010838.en_US
dc.identifier.citedreferenceAuster, H. U., et al. ( 2008 ), Space Sci. Rev., 141 ( 1–4 ), 235 – 264, doi: 10.1007/s11214-008-9365-9.en_US
dc.identifier.citedreferenceBaumjohann, W., M. Hesse, S. Kokubun, T. Mukai, T. Nagai, and A. A. Petrukovich ( 1999 ), Substorm dipolarization and recovery, J. Geophys. Res., 104 ( A11 ), 24,995 – 25,000, doi: 10.1029/1999JA900282.en_US
dc.identifier.citedreferenceBirn, J., A. Runov, and M. Hesse ( 2014 ), Energetic Electrons in Dipolarization Events: Spatial Properties and Anisotropy, J. Geophys. Res. Space Physics, 119, 3604 – 3616, doi: 10.1002/2013JA019738.en_US
dc.identifier.citedreferenceChirikov, B. V. ( 1987 ), Particle dynamics in magnetic traps, in Reviews of Plasma Physics, vol. 13, edited by B. B. Kadomtsev, 1 pp., Consultants Bureau, New York.en_US
dc.identifier.citedreferenceDeng, X., M. Ashour‐Abdalla, M. Zhou, R. Walker, M. El‐Alaoui, V. Angelopoulos, R. E. Ergun, and D. Schriver ( 2010 ), Wave and particle characteristics of earthward electron injections associated with dipolarization fronts, J. Geophys. Res., 115, A09225, doi: 10.1029/2009JA015107.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, M. J. Wiltberger, and J. G. Lyon ( 2002 ), MHD/particle simulations of radiation belt dynamics, J. Atmos. Sol. Terr. Phys., 64, 607 – 615, doi: 10.1016/S1364-6826(02)00018-4.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.