Show simple item record

Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale

dc.contributor.authorCockburn, Darrell W.en_US
dc.contributor.authorOrlovsky, Nicole I.en_US
dc.contributor.authorFoley, Matthew H.en_US
dc.contributor.authorKwiatkowski, Kurt J.en_US
dc.contributor.authorBahr, Constance M.en_US
dc.contributor.authorMaynard, Malloryen_US
dc.contributor.authorDemeler, Borriesen_US
dc.contributor.authorKoropatkin, Nicole M.en_US
dc.date.accessioned2015-02-19T15:40:48Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationCockburn, Darrell W.; Orlovsky, Nicole I.; Foley, Matthew H.; Kwiatkowski, Kurt J.; Bahr, Constance M.; Maynard, Mallory; Demeler, Borries; Koropatkin, Nicole M. (2015). "Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale." Molecular Microbiology (2): 209-230.en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110609
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherRoyal Society of Chemistryen_US
dc.titleMolecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectaleen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110609/1/mmi12859.pdf
dc.identifier.doi10.1111/mmi.12859en_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceRobert, C., and Bernalier‐Donadille, A. ( 2003 ) The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose‐degrading bacteria in methane‐excreting subjects. FEMS Microbiol Ecol 46: 81 – 89.en_US
dc.identifier.citedreferenceSegain, J.P., Raingeard de la Bletiere, D., Bourreille, A., Leray, V., Gervois, N., Rosales, C., et al. ( 2000 ) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut 47: 397 – 403.en_US
dc.identifier.citedreferenceSivakumar, N., Li, N., Tang, J.W., Patel, B.K., and Swaminathan, K. ( 2006 ) Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly‐extreme condition. FEBS Lett 580: 2646 – 2652.en_US
dc.identifier.citedreferenceStam, M.R., Danchin, E.G., Rancurel, C., Coutinho, P.M., and Henrissat, B. ( 2006 ) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha‐amylase‐related proteins. Protein Eng Des Sel 19: 555 – 562.en_US
dc.identifier.citedreferenceStappenbeck, T.S., Hooper, L.V., and Gordon, J.I. ( 2002 ) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99: 15451 – 15455.en_US
dc.identifier.citedreferenceVahedi‐Faridi, A., Licht, A., Bulut, H., Scheffel, F., Keller, S., Wehmeier, U.F., et al. ( 2010 ) Crystal structures of the solute receptor GacH of Streptomyces glaucescens in complex with acarbose and an acarbose homolog: comparison with the acarbose‐loaded maltose‐binding protein of Salmonella typhimurium. J Mol Biol 397: 709 – 723.en_US
dc.identifier.citedreferenceVan Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L., and Clardy, J. ( 1993 ) Atomic structures of the human immunophilin FKBP‐12 complexes with FK506 and rapamycin. J Mol Biol 229: 105 – 124.en_US
dc.identifier.citedreferenceVan Immerseel, F., Ducatelle, R., De Vos, M., Boon, N., Van De Wiele, T., Verbeke, K., et al. ( 2010 ) Butyric acid‐producing anaerobic bacteria as a novel probiotic treatment approach for inflammatory bowel disease. J Med Microbiol 59: 141 – 143.en_US
dc.identifier.citedreferenceVonk, R.J., Hagedoorn, R.E., de Graaff, R., Elzinga, H., Tabak, S., Yang, Y.X., and Stellaard, F. ( 2000 ) Digestion of so‐called resistant starch sources in the human small intestine. Am J Clin Nutr 72: 432 – 438.en_US
dc.identifier.citedreferenceWaffenschmidt, S., and Jaenicke, L. ( 1987 ) Assay of reducing sugars in the nanomole range with 2,2′‐bicinchoninate. Anal Biochem 165: 337 – 340.en_US
dc.identifier.citedreferenceWalker, A.W., Duncan, S.H., Harmsen, H.J., Holtrop, G., Welling, G.W., and Flint, H.J. ( 2008 ) The species composition of the human intestinal microbiota differs between particle‐associated and liquid phase communities. Environ Microbiol 10: 3275 – 3283.en_US
dc.identifier.citedreferenceWalker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., et al. ( 2011 ) Dominant and diet‐responsive groups of bacteria within the human colonic microbiota. ISME J 5: 220 – 230.en_US
dc.identifier.citedreferenceWang, J.F., Zhu, Y.H., Li, D.F., Wang, Z., and Jensen, B.B. ( 2004 ) In vitro fermentation of various fiber and starch sources by pig fecal inocula. J Anim Sci 82: 2615 – 2622.en_US
dc.identifier.citedreferenceWilling, B.P., Dicksved, J., Halfvarson, J., Andersson, A.F., Lucio, M., Zheng, Z., et al. ( 2010 ) A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139: 1844 – 1854.e1.en_US
dc.identifier.citedreferenceWilson, W.A., Roach, P.J., Montero, M., Baroja‐Fernandez, E., Munoz, F.J., Eydallin, G., et al. ( 2010 ) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34: 952 – 985.en_US
dc.identifier.citedreferenceWu, N., Yang, X., Zhang, R., Li, J., Xiao, X., Hu, Y., et al. ( 2013 ) Dysbiosis signature of fecal microbiota in colorectal cancer patients. Microb Ecol 66: 462 – 470.en_US
dc.identifier.citedreferenceYoshioka, Y., Hasegawa, K., Matsuura, Y., Katsube, Y., and Kubota, M. ( 1997 ) Crystal structures of a mutant maltotetraose‐forming exo‐amylase cocrystallized with maltopentaose. J Mol Biol 271: 619 – 628.en_US
dc.identifier.citedreferenceYu, N.Y., Wagner, J.R., Laird, M.R., Melli, G., Rey, S., Lo, R., et al. ( 2010 ) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26: 1608 – 1615.en_US
dc.identifier.citedreferenceYu, T., Xu, X., Peng, Y., Luo, Y., and Yang, K. ( 2012 ) Cell wall proteome of Clostridium thermocellum and detection of glycoproteins. Microbiol Res 167: 364 – 371.en_US
dc.identifier.citedreferenceZe, X., Duncan, S.H., Louis, P., and Flint, H.J. ( 2012 ) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6: 1535 – 1543.en_US
dc.identifier.citedreferenceZukin, R.S., Strange, P.G., Heavey, R., and Koshland, D.E. ( 1977 ) Properties of the galactose binding protein of Salmonella typhimurium and Escherichia coli. Biochemistry 16: 381 – 386.en_US
dc.identifier.citedreferenceZwart, P.H., Afonine, P.V., Grosse‐Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., et al. ( 2008 ) Automated structure solution with the PHENIX suite. Methods Mol Biol 426: 419 – 435.en_US
dc.identifier.citedreferenceAbbott, D.W., Higgins, M.A., Hyrnuik, S., Pluvinage, B., Lammerts van Bueren, A., and Boraston, A.B. ( 2010 ) The molecular basis of glycogen breakdown and transport in Streptococcus pneumoniae. Mol Microbiol 77: 183 – 199.en_US
dc.identifier.citedreferenceAbell, G.C., Cooke, C.M., Bennett, C.N., Conlon, M.A., and McOrist, A.L. ( 2008 ) Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch. FEMS Microbiol Ecol 66: 505 – 515.en_US
dc.identifier.citedreferenceAdams, P.D., Grosse‐Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., et al. ( 2002 ) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58: 1948 – 1954.en_US
dc.identifier.citedreferenceAkiyama, N., Takeda, K., and Miki, K. ( 2009 ) Crystal structure of a periplasmic substrate‐binding protein in complex with calcium lactate. J Mol Biol 392: 559 – 565.en_US
dc.identifier.citedreferenceArumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., et al. ( 2011 ) Enterotypes of the human gut microbiome. Nature 473: 174 – 180.en_US
dc.identifier.citedreferenceBrookes, E., Cao, W., and Demeler, B. ( 2010 ) A two‐dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39: 405 – 414.en_US
dc.identifier.citedreferenceChassard, C., Delmas, E., Robert, C., Lawson, P.A., and Bernalier‐Donadille, A. ( 2012 ) Ruminococcus champanellensis sp. nov., a cellulose‐degrading bacterium from human gut microbiota. Int J Syst Evol Microbiol 62: 138 – 143.en_US
dc.identifier.citedreferenceClarke, J.M., Topping, D.L., Bird, A.R., Young, G.P., and Cobiac, L. ( 2008 ) Effects of high‐amylose maize starch and butyrylated high‐amylose maize starch on azoxymethane‐induced intestinal cancer in rats. Carcinogenesis 29: 2190 – 2194.en_US
dc.identifier.citedreferenceCockburn, D.W., and Svensson, B. ( 2013 ) Surface binding sites in carbohydrate active enzymes: and emerging picture of structural and functional diversity. In Carbohydrate Chemistry: Chemical and Biological Approaches. Lindhorst, T.K., and Rauter, A.P. (eds). Cambridge: Royal Society of Chemistry, pp. 204 – 221.en_US
dc.identifier.citedreferenceColinge, J., Chiappe, D., Lagache, S., Moniatte, M., and Bougueleret, L. ( 2005 ) Differential proteomics via probabilistic peptide identification scores. Anal Chem 77: 596 – 606.en_US
dc.identifier.citedreferenceComfort, D., and Clubb, R.T. ( 2004 ) A comparative genome analysis identifies distinct sorting pathways in gram‐positive bacteria. Infect Immun 72: 2710 – 2722.en_US
dc.identifier.citedreferenceConlon, M.A., Kerr, C.A., McSweeney, C.S., Dunne, R.A., Shaw, J.M., Kang, S., et al. ( 2012 ) Resistant starches protect against colonic DNA damage and alter microbiota and gene expression in rats fed a Western diet. J Nutr 142: 832 – 840.en_US
dc.identifier.citedreferenceDemeler, B. ( 2010 ) Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins. In Current Protocols in Protein Science. John Wiley & sons, Ltd, pp. 7.13.11 – 17.13.24. DOI: 10.1002/0471140864.ps0713s60en_US
dc.identifier.citedreferenceDemeler, B., and van Holde, K.E. ( 2004 ) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335: 279 – 288.en_US
dc.identifier.citedreferenceDemeler, B., Gorbet, G., Zollars, D., Dubbs, B., Brookes, E., and Cao, W.D. ( 2014 ) UltraScan‐III version 3.1: a comprehensive data analysis software package for analytical ultracentrifugation experiments.en_US
dc.identifier.citedreferenceDuncan, S.H., and Flint, H.J. ( 2008 ) Proposal of a neotype strain (A1‐86) for Eubacterium rectale. Request for an opinion. Int J Syst Evol Microbiol 58: 1735 – 1736.en_US
dc.identifier.citedreferenceDuncan, S.H., Belenguer, A., Holtrop, G., Johnstone, A.M., Flint, H.J., and Lobley, G.E. ( 2007 ) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate‐producing bacteria in feces. Appl Environ Microbiol 73: 1073 – 1078.en_US
dc.identifier.citedreferenceEckburg, P.B., Bik, E.M., Bernstein, C.N., Purdom, E., Dethlefsen, L., Sargent, M., et al. ( 2005 ) Diversity of the human intestinal microbial flora. Science 308: 1635 – 1638.en_US
dc.identifier.citedreferenceEl Kaoutari, A., Armougom, F., Gordon, J.I., Raoult, D., and Henrissat, B. ( 2013 ) The abundance and variety of carbohydrate‐active enzymes in the human gut microbiota. Nat Rev Microbiol 11: 497 – 504.en_US
dc.identifier.citedreferenceEmsley, P., and Cowtan, K. ( 2004 ) Coot: model‐building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126 – 2132.en_US
dc.identifier.citedreferenceForesti, M.L., Williams Mdel, P., Martinez‐Garcia, R., and Vazquez, A. ( 2014 ) Analysis of a preferential action of alpha‐amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydr Polym 102: 80 – 87.en_US
dc.identifier.citedreferenceFrank, D.N., St Amand, A.L., Feldman, R.A., Boedeker, E.C., Harpaz, N., and Pace, N.R. ( 2007 ) Molecular‐phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA 104: 13780 – 13785.en_US
dc.identifier.citedreferenceFrank, D.N., Robertson, C.E., Hamm, C.M., Kpadeh, Z., Zhang, T., Chen, H., et al. ( 2011 ) Disease phenotype and genotype are associated with shifts in intestinal‐associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis 17: 179 – 184.en_US
dc.identifier.citedreferenceGevers, D., Kugathasan, S., Denson, L.A., Vazquez‐Baeza, Y., Van Treuren, W., Ren, B., et al. ( 2014 ) The treatment‐naive microbiome in new‐onset Crohn's disease. Cell Host Microbe 15: 382 – 392.en_US
dc.identifier.citedreferenceGibbons, R.J., and Kapsimalis, B. ( 1963 ) Synthesis of intracellular iodophilic polysaccharide by Streptococcus mitis. Arch Oral Biol 8: 319 – 329.en_US
dc.identifier.citedreferenceHaider, S., and Pal, R. ( 2013 ) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14: 91 – 110.en_US
dc.identifier.citedreferenceHamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J., and Brummer, R.J. ( 2008 ) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27: 104 – 119.en_US
dc.identifier.citedreferenceHan, Y., Agarwal, V., Dodd, D., Kim, J., Bae, B., Mackie, R.I., et al. ( 2012 ) Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius polysaccharolyticus. J Biol Chem 287: 34946 – 34960.en_US
dc.identifier.citedreferenceHold, G.L., Schwiertz, A., Aminov, R.I., Blaut, M., and Flint, H.J. ( 2003 ) Oligonucleotide probes that detect quantitatively significant groups of butyrate‐producing bacteria in human feces. Appl Environ Microbiol 69: 4320 – 4324.en_US
dc.identifier.citedreferenceHolm, L., and Sander, C. ( 1995 ) Dali: a network tool for protein structure comparison. Trends Biochem Sci 20: 478 – 480.en_US
dc.identifier.citedreferenceJiang, G., and Liu, Q. ( 2002 ) Characterization of residues from partially hydrolyzed potato and high amylose corn starches by pancreatic alpha‐amylase. Starch 54: 527 – 533.en_US
dc.identifier.citedreferenceKang, S., Denman, S.E., Morrison, M., Yu, Z., Dore, J., Leclerc, M., and McSweeney, C.S. ( 2010 ) Dysbiosis of fecal microbiota in Crohn's disease patients as revealed by a custom phylogenetic microarray. Inflamm Bowel Dis 16: 2034 – 2042.en_US
dc.identifier.citedreferenceKarlsson, F.H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C.J., Fagerberg, B., et al. ( 2013 ) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99 – 103.en_US
dc.identifier.citedreferenceKoropatkin, N.M., and Smith, T.J. ( 2010 ) SusG: a unique cell‐membrane‐associated alpha‐amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18: 200 – 215.en_US
dc.identifier.citedreferenceKoropatkin, N.M., Cameron, E.A., and Martens, E.C. ( 2012 ) How glycan metabolism shapes the human gut microbiota. Nat Rev Microbiol 10: 323 – 335.en_US
dc.identifier.citedreferenceKraal, L., Abubucker, S., Kota, K., Fischbach, M.A., and Mitreva, M. ( 2014 ) The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS ONE 9: e97279.en_US
dc.identifier.citedreferenceLarsen, N., Vogensen, F.K., van den Berg, F.W., Nielsen, D.S., Andreasen, A.S., Pedersen, B.K., et al. ( 2010 ) Gut microbiota in human adults with type 2 diabetes differs from non‐diabetic adults. PLoS ONE 5: e9085.en_US
dc.identifier.citedreferenceLaue, T.M., Shah, B.D., Ridgeway, T.M., and Peltier, S.L. ( 1992 ) Computer‐aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science. Harding, S.E., Rowe, A.J., and Horton, J.C. (eds). Cambridge: Royal Society of Chemistry, pp. 90 – 125.en_US
dc.identifier.citedreferenceLee, H.S., Kim, M.S., Cho, H.S., Kim, J.I., Kim, T.J., Choi, J.H., et al. ( 2002 ) Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J Biol Chem 277: 21891 – 21897.en_US
dc.identifier.citedreferenceLeitch, E.C., Walker, A.W., Duncan, S.H., Holtrop, G., and Flint, H.J. ( 2007 ) Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9: 667 – 679.en_US
dc.identifier.citedreferenceLey, R.E., Peterson, D.A., and Gordon, J.I. ( 2006a ) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837 – 848.en_US
dc.identifier.citedreferenceLey, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. ( 2006b ) Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022 – 1023.en_US
dc.identifier.citedreferenceMcCoy, A.J., Grosse‐Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. ( 2007 ) Phaser crystallographic software. J Appl Crystallogr 40: 658 – 674.en_US
dc.identifier.citedreferenceMachiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., et al. ( 2014 ) A decrease of the butyrate‐producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63: 1275 – 1283.en_US
dc.identifier.citedreferenceMaeda, K., Nagata, H., Kuboniwa, M., Ojima, M., Osaki, T., Minamino, N., and Amano, A. ( 2013 ) Identification and characterization of Porphyromonas gingivalis client proteins that bind to Streptococcus oralis glyceraldehyde‐3‐phosphate dehydrogenase. Infect Immun 81: 753 – 763.en_US
dc.identifier.citedreferenceMahowald, M.A., Rey, F.E., Seedorf, H., Turnbaugh, P.J., Fulton, R.S., Wollam, A., et al. ( 2009 ) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci USA 106: 5859 – 5864.en_US
dc.identifier.citedreferenceMartinez, I., Kim, J., Duffy, P.R., Schlegel, V.L., and Walter, J. ( 2010 ) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS ONE 5: e15046.en_US
dc.identifier.citedreferenceMatsumoto, N., Yamada, M., Kurakata, Y., Yoshida, H., Kamitori, S., Nishikawa, A., and Tonozuka, T. ( 2009 ) Crystal structures of open and closed forms of cyclo/maltodextrin‐binding protein. FEBS J 276: 3008 – 3019.en_US
dc.identifier.citedreferenceMazmanian, S.K., Liu, C.H., Tzianabos, A.O., and Kasper, D.L. ( 2005 ) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107 – 118.en_US
dc.identifier.citedreferenceMazmanian, S.K., Round, J.L., and Kasper, D.L. ( 2008 ) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453: 620 – 625.en_US
dc.identifier.citedreferenceMorgan, X.C., Tickle, T.L., Sokol, H., Gevers, D., Devaney, K.L., Ward, D.V., et al. ( 2012 ) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13: R79.en_US
dc.identifier.citedreferenceMowbray, S.L., Smith, R.D., and Cole, L.B. ( 1990 ) Structure of the periplasmic glucose/galactose receptor of Salmonella typhimurium. Receptor 1: 41 – 53.en_US
dc.identifier.citedreferencevan Munster, I.P., Tangerman, A., and Nagengast, F.M. ( 1994 ) Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Dig Dis Sci 39: 834 – 842.en_US
dc.identifier.citedreferenceNemoto, H., Kataoka, K., Ishikawa, H., Ikata, K., Arimochi, H., Iwasaki, T., et al. ( 2012 ) Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis. Dig Dis Sci 57: 2955 – 2964.en_US
dc.identifier.citedreferenceNie, L., Wu, G., Culley, D.E., Scholten, J.C., and Zhang, W. ( 2007 ) Integrative analysis of transcriptomic and proteomic data: challenges, solutions and applications. Crit Rev Biotechnol 27: 63 – 75.en_US
dc.identifier.citedreferenceNielsen, M.M., Bozonnet, S., Seo, E.S., Motyan, J.A., Andersen, J.M., Dilokpimol, A., et al. ( 2009 ) Two secondary carbohydrate binding sites on the surface of barley alpha‐amylase 1 have distinct functions and display synergy in hydrolysis of starch granules. Biochemistry 48: 7686 – 7697.en_US
dc.identifier.citedreferenceOld, W.M., Meyer‐Arendt, K., Aveline‐Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., et al. ( 2005 ) Comparison of label‐free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4: 1487 – 1502.en_US
dc.identifier.citedreferenceOldham, M.L., Chen, S., and Chen, J. ( 2013 ) Structural basis for substrate specificity in the Escherichia coli maltose transport system. Proc Natl Acad Sci USA 110: 18132 – 18137.en_US
dc.identifier.citedreferenceOtwinowski, Z., and Minor, W. ( 1997 ) Processing of X‐ray diffraction data collected in oscillation mode. In Methods in Enzymology. Carter, C.W.J., and Sweet, R.M.R.M. (eds). New York: Academic Press, pp. 307 – 326.en_US
dc.identifier.citedreferencePeng, J., Narasimhan, S., Marchesi, J.R., Benson, A., Wong, F.S., and Wen, L. ( 2014 ) Long term effect of gut microbiota transfer on diabetes development. J Autoimmun 53: 85 – 94.en_US
dc.identifier.citedreferencePryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S., and Flint, H.J. ( 2002 ) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217: 133 – 139.en_US
dc.identifier.citedreferenceQin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. ( 2010 ) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59 – 65.en_US
dc.identifier.citedreferenceQin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. ( 2012 ) A metagenome‐wide association study of gut microbiota in type 2 diabetes. Nature 490: 55 – 60.en_US
dc.identifier.citedreferenceRamsay, A.G., Scott, K.P., Martin, J.C., Rincon, M.T., and Flint, H.J. ( 2006 ) Cell‐associated alpha‐amylases of butyrate‐producing Firmicute bacteria from the human colon. Microbiology 152: 3281 – 3290.en_US
dc.identifier.citedreferenceRees, D.C., Johnson, E., and Lewinson, O. ( 2009 ) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10: 218 – 227.en_US
dc.identifier.citedreferenceSchafer, K., Magnusson, U., Scheffel, F., Schiefner, A., Sandgren, M.O., Diederichs, K., et al. ( 2004 ) X‐ray structures of the maltose‐maltodextrin‐binding protein of the thermoacidophilic bacterium Alicyclobacillus acidocaldarius provide insight into acid stability of proteins. J Mol Biol 335: 261 – 274.en_US
dc.identifier.citedreferenceSchuck, P., and Demeler, B. ( 1999 ) Direct sedimentation boundary analysis of interference optical data in analytical ultracentrifugation. Biophys J 76: 2288 – 2296.en_US
dc.identifier.citedreferenceScott, K.P., Martin, J.C., Chassard, C., Clerget, M., Potrykus, J., Campbell, G., et al. ( 2011 ) Substrate‐driven gene expression in Roseburia inulinivorans: importance of inducible enzymes in the utilization of inulin and starch. Proc Natl Acad Sci USA 108 ( Suppl. 1 ): 4672 – 4679.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.