Show simple item record

Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds

dc.contributor.authorYang, Jieen_US
dc.contributor.authorWang, Shih‐kaien_US
dc.contributor.authorChoi, Murimen_US
dc.contributor.authorReid, Bryan M.en_US
dc.contributor.authorHu, Yuanyuanen_US
dc.contributor.authorLee, Yuan‐lingen_US
dc.contributor.authorHerzog, Curtis R.en_US
dc.contributor.authorKim‐berman, Heraen_US
dc.contributor.authorLee, Mosesen_US
dc.contributor.authorBenke, Paul J.en_US
dc.contributor.authorKent Lloyd, K. C.en_US
dc.contributor.authorSimmer, James P.en_US
dc.contributor.authorHu, Jan C.‐c.en_US
dc.date.accessioned2015-02-19T15:40:49Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01en_US
dc.identifier.citationYang, Jie; Wang, Shih‐kai ; Choi, Murim; Reid, Bryan M.; Hu, Yuanyuan; Lee, Yuan‐ling ; Herzog, Curtis R.; Kim‐berman, Hera ; Lee, Moses; Benke, Paul J.; Kent Lloyd, K. C.; Simmer, James P.; Hu, Jan C.‐c. (2015). "Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds." Molecular Genetics & Genomic Medicine (1): 40-58.en_US
dc.identifier.issn2324-9269en_US
dc.identifier.issn2324-9269en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110612
dc.description.abstractWNT10A is a signaling molecule involved in tooth development, and WNT10A defects are associated with tooth agenesis. We characterized Wnt10a null mice generated by the knockout mouse project (KOMP) and six families with WNT10A mutations, including a novel p.Arg104Cys defect, in the absence of EDA, EDAR, or EDARADD variations. Wnt10a null mice exhibited supernumerary mandibular fourth molars, and smaller molars with abnormal cusp patterning and root taurodontism. Wnt10a−/− incisors showed distinctive apical–lingual wedge‐shaped defects. These findings spurred us to closely examine the dental phenotypes of our WNT10A families. WNT10A heterozygotes exhibited molar root taurodontism and mild tooth agenesis (with incomplete penetrance) in their permanent dentitions. Individuals with two defective WNT10A alleles showed severe tooth agenesis and had fewer cusps on their molars. The misshapened molar crowns and roots were consistent with the Wnt10a null phenotype and were not previously associated with WNT10A defects. The missing teeth contrasted with the presence of supplemental teeth in the Wnt10a null mice and demonstrated mammalian species differences in the roles of Wnt signaling in early tooth development. We conclude that molar crown and root dysmorphologies are caused by WNT10A defects and that the severity of the tooth agenesis correlates with the number of defective WNT10A alleles.We characterized the dentitions of Wnt10a null mice and observed mandibular fourth molars, abnormal molar cusp patterning, molar root taurodontism, and distinctive basal–lingual wedge‐shaped defects in mandibular incisors. We characterized the dentitions six families with WNT10A mutations in the absence of EDA, EDAR, or EDARADD defects and observed, in heterozygotes, molar root taurodontism and mild tooth agenesis, and in homozygotes, severe tooth agenesis and molars with fewer cusps. This expands the known clinical phenotype in WNT10A families and demonstrates differences in the roles of Wnt signaling in early tooth development between mice and humans.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherhypodontiaen_US
dc.subject.otheroligodontia, taurodontismen_US
dc.subject.otherFamilial tooth agenesisen_US
dc.titleTaurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindredsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelHuman Geneticsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110612/1/mgg3111.pdf
dc.identifier.doi10.1002/mgg3.111en_US
dc.identifier.sourceMolecular Genetics & Genomic Medicineen_US
dc.identifier.citedreferenceLyngstadaas, S. P., C. B. Moinichen, and S. Risnes. 1998. Crown morphology, enamel distribution, and enamel structure in mouse molars. Anat. Rec. 250: 268 – 280.en_US
dc.identifier.citedreferenceHe, H., D. Han, H. Feng, H. Qu, S. Song, B. Bai, et al. 2013. Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the chinese population. PLoS ONE 8: e80393.en_US
dc.identifier.citedreferenceJernvall, J., and I. Thesleff. 2012. Tooth shape formation and tooth renewal: evolving with the same signals. Development 139: 3487 – 3497.en_US
dc.identifier.citedreferenceKantaputra, P., and W. Sripathomsawat. 2011. WNT10A and isolated hypodontia. Am. J. Med. Genet. A 155A: 1119 – 1122.en_US
dc.identifier.citedreferenceKantaputra, P., M. Kaewgahya, and W. Kantaputra. 2014. WNT10A mutations also associated with agenesis of the maxillary permanent canines, a separate entity. Am. J. Med. Genet. A 164A: 360 – 363.en_US
dc.identifier.citedreferenceKim, T. H., C. H. Bae, J. C. Lee, S. O. Ko, X. Yang, R. Jiang, et al. 2013. beta‐catenin is required in odontoblasts for tooth root formation. J. Dent. Res. 92: 215 – 221.en_US
dc.identifier.citedreferenceKrappmann, D., E. Wegener, Y. Sunami, M. Esen, A. Thiel, B. Mordmuller, et al. 2004. The IkappaB kinase complex and NF‐kappaB act as master regulators of lipopolysaccharide‐induced gene expression and control subordinate activation of AP‐1. Mol. Cell. Biol. 24: 6488 – 6500.en_US
dc.identifier.citedreferenceKumakami‐Sakano, M., K. Otsu, N. Fujiwara, and H. Harada. 2014. Regulatory mechanisms of Hertwigs epithelial root sheath formation and anomaly correlated with root length. Exp. Cell Res. 325: 78 – 82.en_US
dc.identifier.citedreferenceKupczik, K., and J. J. Hublin. 2010. Mandibular molar root morphology in Neanderthals and Late Pleistocene and recent Homo sapiens. J. Hum. Evol. 59: 525 – 541.en_US
dc.identifier.citedreferenceLammi, L., S. Arte, M. Somer, H. Jarvinen, P. Lahermo, I. Thesleff, et al. 2004. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet. 74: 1043 – 1050.en_US
dc.identifier.citedreferenceLan, Y., S. Jia, and R. Jiang. 2014. Molecular patterning of the mammalian dentition. Semin. Cell Dev. Biol. 25‐26C: 61 – 70. 10.1016/j.semcdb.2013.1012.1003.en_US
dc.identifier.citedreferenceLexner, M. O., A. Bardow, J. M. Hertz, L. Almer, B. Nauntofte, and S. Kreiborg. 2007. Whole saliva in X‐linked hypohidrotic ectodermal dysplasia. Int. J. Paediatry Dent. 17: 155 – 162.en_US
dc.identifier.citedreferenceLiu, F., and S. E. Millar. 2010. Wnt/beta‐catenin signaling in oral tissue development and disease. J. Dent. Res. 89: 318 – 330.en_US
dc.identifier.citedreferenceLiu, F., E. Y. Chu, B. Watt, Y. Zhang, N. M. Gallant, T. Andl, et al. 2008. Wnt/beta‐catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol. 313: 210 – 224.en_US
dc.identifier.citedreferenceLumsden, A. G. 1988. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103 ( Suppl. ): 155 – 169.en_US
dc.identifier.citedreferenceNakatomi, M., M. Hovorakova, A. Gritli‐Linde, H. J. Blair, K. MacArthur, M. Peterka, et al. 2013. Evc regulates a symmetrical response to Shh signaling in molar development. J. Dent. Res. 92: 222 – 228.en_US
dc.identifier.citedreferenceNieminen, P. 2009. Genetic basis of tooth agenesis. J. Exp. Zool. B Mol. Dev. Evol. 312B: 320 – 342.en_US
dc.identifier.citedreferenceNoor, A., C. Windpassinger, I. Vitcu, M. Orlic, M. A. Rafiq, M. Khalid, et al. 2009. Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF‐beta binding protein 3. Am. J. Hum. Genet. 84: 519 – 523.en_US
dc.identifier.citedreferencePlaisancie, J., I. Bailleul‐Forestier, V. Gaston, F. Vaysse, D. Lacombe, M. Holder‐Espinasse, et al. 2013. Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia. Am. J. Med. Genet. A 161: 671 – 678.en_US
dc.identifier.citedreferencePrufer, K., F. Racimo, N. Patterson, F. Jay, S. Sankararaman, S. Sawyer, et al. 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505: 43 – 49.en_US
dc.identifier.citedreferenceRakian, A., W. C. Yang, J. Gluhak‐Heinrich, Y. Cui, M. A. Harris, D. Villarreal, et al. 2013. Bone morphogenetic protein‐2 gene controls tooth root development in coordination with formation of the periodontium. Int. J. Oral. Sci. 5: 75 – 84.en_US
dc.identifier.citedreferenceSasaki, T., Y. Ito, X. Xu, J. Han, P. Bringas Jr, T. Maeda, et al. 2005. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol. 278: 130 – 143.en_US
dc.identifier.citedreferenceSong, S., R. Zhao, H. He, J. Zhang, H. Feng, and L. Lin. 2014. WNT10A variants are associated with non‐syndromic tooth agenesis in the general population. Hum. Genet. 133: 117 – 124.en_US
dc.identifier.citedreferenceThesleff, I. 2006. The genetic basis of tooth development and dental defects. Am. J. Med. Genet. A 140: 2530 – 2535.en_US
dc.identifier.citedreferenceWang, X. P., and J. Fan. 2011. Molecular genetics of supernumerary tooth formation. Genesis 49: 261 – 277.en_US
dc.identifier.citedreferenceWang, J., and G. M. Shackleford. 1996. Murine Wnt10a and Wnt10b: cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 13: 1537 – 1544.en_US
dc.identifier.citedreferenceYamashiro, T., L. Zheng, Y. Shitaku, M. Saito, T. Tsubakimoto, K. Takada, et al. 2007. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 75: 452 – 462.en_US
dc.identifier.citedreferenceYu, H. M., B. Jerchow, T. J. Sheu, B. Liu, F. Costantini, J. E. Puzas, et al. 2005. The role of Axin2 in calvarial morphogenesis and craniosynostosis. Development 132: 1995 – 2005.en_US
dc.identifier.citedreferenceZhang, Y., P. Tomann, T. Andl, N. M. Gallant, J. Huelsken, B. Jerchow, et al. 2009. Reciprocal requirements for EDA/EDAR/NF‐kappaB and Wnt/beta‐catenin signaling pathways in hair follicle induction. Dev. Cell 17: 49 – 61.en_US
dc.identifier.citedreferenceJernvall, J., P. Kettunen, I. Karavanova, L. B. Martin, and I. Thesleff. 1994. Evidence for the role of the enamel knot as a control center in mammalian tooth cusp formation: non‐dividing cells express growth stimulating Fgf‐4 gene. Int. J. Dev. Biol. 38: 463 – 469.en_US
dc.identifier.citedreferenceAdaimy, L., E. Chouery, H. Megarbane, S. Mroueh, V. Delague, E. Nicolas, et al. 2007. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto‐onycho‐dermal dysplasia. Am. J. Hum. Genet. 81: 821 – 828.en_US
dc.identifier.citedreferenceArte, S., S. Parmanen, S. Pirinen, S. Alaluusua, and P. Nieminen. 2013. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS ONE 8: e73705.en_US
dc.identifier.citedreferenceBae, C. H., J. Y. Lee, T. H. Kim, J. A. Baek, J. C. Lee, X. Yang, et al. 2013. Excessive Wnt/beta‐catenin signaling disturbs tooth‐root formation. J. Periodontal Res. 48: 405 – 410.en_US
dc.identifier.citedreferenceBohring, A., T. Stamm, C. Spaich, C. Haase, K. Spree, U. Hehr, et al. 2009. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex‐biased manifestation pattern in heterozygotes. Am. J. Hum. Genet. 85: 97 – 105.en_US
dc.identifier.citedreferencevan den Boogaard, M. J., M. Creton, Y. Bronkhorst, A. van der Hout, E. Hennekam, D. Lindhout, et al. 2012. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J. Med. Genet. 49: 327 – 331.en_US
dc.identifier.citedreferenceBower, R. C. 1983. Furcation development of human mandibular first molar teeth. A histologic graphic reconstructional study. J. Periodontal Res. 18: 412 – 419.en_US
dc.identifier.citedreferenceCharles, C., S. Pantalacci, P. Tafforeau, D. Headon, V. Laudet, and L. Viriot. 2009. Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS ONE 4: e4985.en_US
dc.identifier.citedreferenceChen, J., Y. Lan, J. A. Baek, Y. Gao, and R. Jiang. 2009. Wnt/beta‐catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev. Biol. 334: 174 – 185.en_US
dc.identifier.citedreferenceChoi, M., U. I. Scholl, W. Ji, T. Liu, I. R. Tikhonova, P. Zumbo, et al. 2009. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106: 19096 – 19101.en_US
dc.identifier.citedreferenceCobourne, M. T., and P. T. Sharpe. 2013. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. Wiley Interdiscip. Rev. Dev. Biol. 2: 183 – 212.en_US
dc.identifier.citedreferenceDabovic, B., Y. Chen, C. Colarossi, H. Obata, L. Zambuto, M. A. Perle, et al. 2002. Bone abnormalities in latent TGF‐[beta] binding protein (Ltbp)‐3‐null mice indicate a role for Ltbp‐3 in modulating TGF‐[beta] bioavailability. J. Cell Biol. 156: 227 – 232.en_US
dc.identifier.citedreferenceDassule, H. R., and A. P. McMahon. 1998. Analysis of epithelial‐mesenchymal interactions in the initial morphogenesis of the mammalian tooth. Dev. Biol. 202: 215 – 227.en_US
dc.identifier.citedreferenceDuverger, O., A. Zah, J. Isaac, H. W. Sun, A. K. Bartels, J. B. Lian, et al. 2012. Neural crest deletion of Dlx3 leads to major dentin defects through down‐regulation of Dspp. J. Biol. Chem. 287: 12230 – 12240.en_US
dc.identifier.citedreferenceHarjunmaa, E., A. Kallonen, M. Voutilainen, K. Hamalainen, M. L. Mikkola, and J. Jernvall. 2012. On the difficulty of increasing dental complexity. Nature 483: 324 – 327.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.