Show simple item record

Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries

dc.contributor.authorTutusaus, Oscaren_US
dc.contributor.authorMohtadi, Ranaen_US
dc.date.accessioned2015-02-19T15:40:52Z
dc.date.available2016-03-02T19:36:56Zen
dc.date.issued2015-01-14en_US
dc.identifier.citationTutusaus, Oscar; Mohtadi, Rana (2015). "Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries." ChemElectroChem 2(1): 51-57.en_US
dc.identifier.issn2196-0216en_US
dc.identifier.issn2196-0216en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110620
dc.description.abstractDespite being considered a promising anode candidate for future battery technologies, the reactivity of Mg metal and its resultant passivation have challenged the development of electrolytes for rechargeable Mg batteries. In this Concept article, we shed light on critical past and current motivations, hurdles, and design strategies of electrolyte development for Mg batteries. Special focus is given to the most recent advancements; in particular, we elaborate on bottom‐up design strategies targeted to overcome the corrosion issue caused by current electrolyte systems. Salts containing the BH motif expanded the portfolio of Mg‐compatible electrolytes and are used as a platform to create a whole new promising family. Here, we explain the approach, challenges, and the path forward for ultimately creating Mg‐compatible, highly stable, and non‐corrosive Mg electrolytes.Enhancing electrolytes: A platform to design electrolytes for rechargeable Mg batteries based on the BH motif has generated a new family of highly promising and noncorrosive electrolytes. The principles that guided the design of state‐of‐the‐art Mg electrolytes and their properties are discussed. In addition, a bottom‐up design approach based on BH compounds is described.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.othermagnesiumen_US
dc.subject.otherbatteriesen_US
dc.subject.otherboronen_US
dc.subject.otherelectrolyteen_US
dc.subject.otherenergy storageen_US
dc.titlePaving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteriesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherMaterials Research Department, Toyota Research Institute of North America, 1555 Woodridge Ave, Ann Arbor, MI 48105 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110620/1/celc_201402207_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110620/2/51_ftp.pdf
dc.identifier.doi10.1002/celc.201402207en_US
dc.identifier.sourceChemElectroChemen_US
dc.identifier.citedreferenceR. Mohtadi, M. Matsui, T. S. Arthur, S.‐J. Hwang, Angew. Chem. Int. Ed. 2012, 51, 9780 – 9783; Angew. Chem. 2012, 124, 9918 – 9921;en_US
dc.identifier.citedreferenceE. R. H. Walker, Chem. Soc. Rev. 1976, 5, 23 – 50.en_US
dc.identifier.citedreferenceT. J. Carter, R. Mohtadi, T. S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J. W. Kampf, Angew. Chem. Int. Ed. 2014, 53, 3173 – 3177; Angew. Chem. 2014, 126, 3237 – 3241.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M. W. Chen, S. Orimo, Nanotechnology 2009, 20, 204013;en_US
dc.identifier.citedreferenceUS Patent 20140038037.en_US
dc.identifier.citedreferenceA. Jaenschke, J. Paap, U. Behrens, Organometallics 2003, 22, 1167 – 1169.en_US
dc.identifier.citedreferenceM. Bremer, H. Nöth, M. Warchhold, Eur. J. Inorg. Chem. 2003, 2003, 111 – 119.en_US
dc.identifier.citedreferenceY. Y. Shao, T. B. Liu, G. S. Li, M. Gu, Z. M. Nie, M. H. Engelhard, J. Xiao, D. P. Lv, C. M. Wang, J. G. Zhang, J. Liu, Sci. Rep. 2013, 3, 3130 – 3137.en_US
dc.identifier.citedreferenceM. C. S.  Escaño, E. Gyenge, R. L. Arevalo, H. Kasai, J. Phys. Chem. C 2011, 115, 19883 – 19889.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH.‐W. Li, Y. Yan, S. Orimo, A. Zettel, C. M. Jensen, Energies 2011, 4, 185 – 214;en_US
dc.identifier.citedreferenceK. Chłopek, C. Frommen, A. Leon, O. Zabara, M. Fichtner, J. Mater. Chem. 2007, 17, 3496 – 3503.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceG. L. Soloveichik, Y. Gao, J. Rijssenbeek, M. Andrus, S. Kniajanski, R. C. Bowman, S.‐J. Hwang, J.‐C. Zhao, Int. J. Hydrogen Energy 2009, 34, 916 – 928.en_US
dc.identifier.citedreferenceR. B. King, Chem. Rev. 2001, 101, 1119 – 1152.en_US
dc.identifier.citedreferenceA. Stock, Hydrides of Boron and Silicon, Cornell University Press, Ithaca, NY, 1933.en_US
dc.identifier.citedreferenceZ. Chen, R. B. King, Chem. Rev. 2005, 105, 3613 – 3642.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. H. Morris, H. J. Gysling, D. Reed, Chem. Rev. 1985, 85, 51 – 76;en_US
dc.identifier.citedreferenceR. T. Boeré, S. Kacprzak, M. Kessler, C. Knapp, R. Reibau, S. Riedel, T. L. Roemmele, M. Ruhle, H. Scherer, S. Weber, Angew. Chem. Int. Ed. 2011, 50, 549 – 552; Angew. Chem. 2011, 123, 572 – 575.en_US
dc.identifier.citedreferenceL. I. Zakharkin, V. N. Kalinin, A. P. Snyakin, B. Acad. Sci. USSR CH+ 1968, 17, 194 – 196.en_US
dc.identifier.citedreferenceSee table 1.en_US
dc.identifier.citedreferenceJ. Dahn, G. M. Ehrlich in Handbook of Batteries, 4 th ed., (Eds.: D. Linden, T. B. Reddy ), McGraw‐Hill, New York, 2011, pp.  26.2.en_US
dc.identifier.citedreferenceH. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265 – 2279.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 2003, 3, 61 – 73;en_US
dc.identifier.citedreferenceM. Matsui, J. Power Sources 2011, 196, 7048 – 7055.en_US
dc.identifier.citedreferenceK. Xu, Chem. Rev. 2004, 104, 4303 – 4417.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceT. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc. 1990, 137, 775 – 780;en_US
dc.identifier.citedreferenceZ. Lu, A. Schechter, M. Moshkovich, D. Aurbach, J. Electroanal. Chem. 1999, 466, 203 – 217.en_US
dc.identifier.citedreferenceNote, however, that two recent publications have indicated some possibility to deposit/strip Mg metal from Mg(TFSI) 2 solutions in ethereal solvents. However, in both cases, a relatively low initial coulombic efficiency or significant worsening in depositing/stripping performance was observed over cycling. More details in:en_US
dc.identifier.citedreferenceS.‐Y. Ha, Y.‐W. Lee, S. W. Woo, B. Koo, J.‐S. Kim, J. Cho, K. T. Lee, N.‐S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063 – 4073;en_US
dc.identifier.citedreferenceY. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.‐D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, Y. Uchimoto, Sci. Rep. 2014, 4, 5622.en_US
dc.identifier.citedreferenceJ. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941 – 5950; R. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 2014, 5, 1291 – 1311.en_US
dc.identifier.citedreferenceD. M. Overcash, F. C. Mathers, Trans. Electrochem. Soc. 1933, 64, 305 – 311.en_US
dc.identifier.citedreferenceW. V. Evans, F. H. Lee, C. H. Lee, J. Am. Chem. Soc. 1935, 57, 489 – 490.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H. E. Gottlieb, Y. Gofer, I. Goldberg, J. Electrochem. Soc. 2002, 149, A 115 –A 121;en_US
dc.identifier.citedreferenceY.‐s. Guo, F. Zhang, J. Yang, F.‐f. Wang, Y. NuLi, S.‐i. Hirano, Energy Environ. Sci. 2012, 5, 9100 – 9106;en_US
dc.identifier.citedreferenceD. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724 – 727.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceC. Liebenow, Z. Yang, P. Lobitz, Electrochem. Commun. 2000, 2, 641 – 645;en_US
dc.identifier.citedreferenceQ. S. Zhao, Y. N. NuLi, Y. S. Guo, J. Yang, J. L. Wang, Electrochim. Acta 2011, 56, 6530 – 6535.en_US
dc.identifier.citedreferenceC. Liao, B. Guo, D.‐e. Jiang, R. Custelcean, S. M. Mahurin, X.‐G. Sun, S. Dai, J. Mater. Chem. A 2014, 2, 581 – 584.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceF.‐f. Wang, Y.‐s. Guo, J. Yang, Y. Nuli, S.‐i. Hirano, Chem. Commun. 2012, 48, 10763 – 10765;en_US
dc.identifier.citedreferenceZ. Zhao‐Karger, X. Zhao, O. Fuhr, M. Fichtner, RSC Adv. 2013, 3, 16330 – 16335;en_US
dc.identifier.citedreferenceH. S. Kim, T. S. Arthur, G. D. Allred, J. Zajicek, J. G. Newman, A. E. Rodnyansky, A. G. Oliver, W. C. Boggess, J. Muldoon, Nat. Commun. 2011, 2, 427;en_US
dc.identifier.citedreferenceR. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 2014, 50, 243 – 245;en_US
dc.identifier.citedreferenceT. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang, J. Liu, J. Mater. Chem. A 2014, 2, 3430 – 3438;en_US
dc.identifier.citedreferenceE. G. Nelson, J. W. Kampf, B. M. Bartlett, Chem. Commun. 2014, 50, 5193 – 5195;en_US
dc.identifier.citedreferenceO. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A 103 –A 109.en_US
dc.identifier.citedreferenceY. Gofer, N. Pour, D. Aurbach in Electrolytic Solutions for Rechargeable Magnesium Batteries. Lithium Batteries: Advanced Technologies and Applications, (Eds.  B. Scrosati, K. M. Abraham, W. Van Schalkwijk, J. Hassoun ), Wiley:‐VCH:Weinheim, Germany 2013; pp.  328 – 345.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceUS Patent 2011159381;en_US
dc.identifier.citedreferenceD. Lv, T. Xu, P. Saha, M. K. Datta, M. L. Gordin, A. Manivannan, P. N. Kumta, D. Wang, J. Electrochem. Soc. 2013, 160, A 351 –A 355.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. Xu., Chem. Rev. 2004, 104, 4303 – 4417;en_US
dc.identifier.citedreferenceG. T. Burstein, C. Liu, R. M. Souto, S. P. Vines, Corros. Eng. Sci. Technol. 2004, 39, 25 – 30.en_US
dc.identifier.citedreferenceJ. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, W. C. Boggess, Energy Environ. Sci. 2013, 6, 482 – 487.en_US
dc.identifier.citedreferenceY. Guo, J. Yang, Y. NuLi, J. Wang, Electrochem. Commun. 2010, 12, 1671 – 1673.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. C. Brown, S. Krishnamurthy, Tetrahedron 1979, 35, 567 – 607;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.