Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries
dc.contributor.author | Tutusaus, Oscar | en_US |
dc.contributor.author | Mohtadi, Rana | en_US |
dc.date.accessioned | 2015-02-19T15:40:52Z | |
dc.date.available | 2016-03-02T19:36:56Z | en |
dc.date.issued | 2015-01-14 | en_US |
dc.identifier.citation | Tutusaus, Oscar; Mohtadi, Rana (2015). "Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries." ChemElectroChem 2(1): 51-57. | en_US |
dc.identifier.issn | 2196-0216 | en_US |
dc.identifier.issn | 2196-0216 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/110620 | |
dc.description.abstract | Despite being considered a promising anode candidate for future battery technologies, the reactivity of Mg metal and its resultant passivation have challenged the development of electrolytes for rechargeable Mg batteries. In this Concept article, we shed light on critical past and current motivations, hurdles, and design strategies of electrolyte development for Mg batteries. Special focus is given to the most recent advancements; in particular, we elaborate on bottom‐up design strategies targeted to overcome the corrosion issue caused by current electrolyte systems. Salts containing the BH motif expanded the portfolio of Mg‐compatible electrolytes and are used as a platform to create a whole new promising family. Here, we explain the approach, challenges, and the path forward for ultimately creating Mg‐compatible, highly stable, and non‐corrosive Mg electrolytes.Enhancing electrolytes: A platform to design electrolytes for rechargeable Mg batteries based on the BH motif has generated a new family of highly promising and noncorrosive electrolytes. The principles that guided the design of state‐of‐the‐art Mg electrolytes and their properties are discussed. In addition, a bottom‐up design approach based on BH compounds is described. | en_US |
dc.publisher | WILEY‐VCH Verlag | en_US |
dc.subject.other | magnesium | en_US |
dc.subject.other | batteries | en_US |
dc.subject.other | boron | en_US |
dc.subject.other | electrolyte | en_US |
dc.subject.other | energy storage | en_US |
dc.title | Paving the Way towards Highly Stable and Practical Electrolytes for Rechargeable Magnesium Batteries | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Chemistry | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109 (USA) | en_US |
dc.contributor.affiliationother | Materials Research Department, Toyota Research Institute of North America, 1555 Woodridge Ave, Ann Arbor, MI 48105 (USA) | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/110620/1/celc_201402207_sm_miscellaneous_information.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/110620/2/51_ftp.pdf | |
dc.identifier.doi | 10.1002/celc.201402207 | en_US |
dc.identifier.source | ChemElectroChem | en_US |
dc.identifier.citedreference | R. Mohtadi, M. Matsui, T. S. Arthur, S.‐J. Hwang, Angew. Chem. Int. Ed. 2012, 51, 9780 – 9783; Angew. Chem. 2012, 124, 9918 – 9921; | en_US |
dc.identifier.citedreference | E. R. H. Walker, Chem. Soc. Rev. 1976, 5, 23 – 50. | en_US |
dc.identifier.citedreference | T. J. Carter, R. Mohtadi, T. S. Arthur, F. Mizuno, R. Zhang, S. Shirai, J. W. Kampf, Angew. Chem. Int. Ed. 2014, 53, 3173 – 3177; Angew. Chem. 2014, 126, 3237 – 3241. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | H. W. Li, K. Miwa, N. Ohba, T. Fujita, T. Sato, Y. Yan, S. Towata, M. W. Chen, S. Orimo, Nanotechnology 2009, 20, 204013; | en_US |
dc.identifier.citedreference | US Patent 20140038037. | en_US |
dc.identifier.citedreference | A. Jaenschke, J. Paap, U. Behrens, Organometallics 2003, 22, 1167 – 1169. | en_US |
dc.identifier.citedreference | M. Bremer, H. Nöth, M. Warchhold, Eur. J. Inorg. Chem. 2003, 2003, 111 – 119. | en_US |
dc.identifier.citedreference | Y. Y. Shao, T. B. Liu, G. S. Li, M. Gu, Z. M. Nie, M. H. Engelhard, J. Xiao, D. P. Lv, C. M. Wang, J. G. Zhang, J. Liu, Sci. Rep. 2013, 3, 3130 – 3137. | en_US |
dc.identifier.citedreference | M. C. S. Escaño, E. Gyenge, R. L. Arevalo, H. Kasai, J. Phys. Chem. C 2011, 115, 19883 – 19889. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | H.‐W. Li, Y. Yan, S. Orimo, A. Zettel, C. M. Jensen, Energies 2011, 4, 185 – 214; | en_US |
dc.identifier.citedreference | K. Chłopek, C. Frommen, A. Leon, O. Zabara, M. Fichtner, J. Mater. Chem. 2007, 17, 3496 – 3503. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | G. L. Soloveichik, Y. Gao, J. Rijssenbeek, M. Andrus, S. Kniajanski, R. C. Bowman, S.‐J. Hwang, J.‐C. Zhao, Int. J. Hydrogen Energy 2009, 34, 916 – 928. | en_US |
dc.identifier.citedreference | R. B. King, Chem. Rev. 2001, 101, 1119 – 1152. | en_US |
dc.identifier.citedreference | A. Stock, Hydrides of Boron and Silicon, Cornell University Press, Ithaca, NY, 1933. | en_US |
dc.identifier.citedreference | Z. Chen, R. B. King, Chem. Rev. 2005, 105, 3613 – 3642. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | J. H. Morris, H. J. Gysling, D. Reed, Chem. Rev. 1985, 85, 51 – 76; | en_US |
dc.identifier.citedreference | R. T. Boeré, S. Kacprzak, M. Kessler, C. Knapp, R. Reibau, S. Riedel, T. L. Roemmele, M. Ruhle, H. Scherer, S. Weber, Angew. Chem. Int. Ed. 2011, 50, 549 – 552; Angew. Chem. 2011, 123, 572 – 575. | en_US |
dc.identifier.citedreference | L. I. Zakharkin, V. N. Kalinin, A. P. Snyakin, B. Acad. Sci. USSR CH+ 1968, 17, 194 – 196. | en_US |
dc.identifier.citedreference | See table 1. | en_US |
dc.identifier.citedreference | J. Dahn, G. M. Ehrlich in Handbook of Batteries, 4 th ed., (Eds.: D. Linden, T. B. Reddy ), McGraw‐Hill, New York, 2011, pp. 26.2. | en_US |
dc.identifier.citedreference | H. D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 2013, 6, 2265 – 2279. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | D. Aurbach, I. Weissman, Y. Gofer, E. Levi, Chem. Rec. 2003, 3, 61 – 73; | en_US |
dc.identifier.citedreference | M. Matsui, J. Power Sources 2011, 196, 7048 – 7055. | en_US |
dc.identifier.citedreference | K. Xu, Chem. Rev. 2004, 104, 4303 – 4417. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | T. D. Gregory, R. J. Hoffman, R. C. Winterton, J. Electrochem. Soc. 1990, 137, 775 – 780; | en_US |
dc.identifier.citedreference | Z. Lu, A. Schechter, M. Moshkovich, D. Aurbach, J. Electroanal. Chem. 1999, 466, 203 – 217. | en_US |
dc.identifier.citedreference | Note, however, that two recent publications have indicated some possibility to deposit/strip Mg metal from Mg(TFSI) 2 solutions in ethereal solvents. However, in both cases, a relatively low initial coulombic efficiency or significant worsening in depositing/stripping performance was observed over cycling. More details in: | en_US |
dc.identifier.citedreference | S.‐Y. Ha, Y.‐W. Lee, S. W. Woo, B. Koo, J.‐S. Kim, J. Cho, K. T. Lee, N.‐S. Choi, ACS Appl. Mater. Interfaces 2014, 6, 4063 – 4073; | en_US |
dc.identifier.citedreference | Y. Orikasa, T. Masese, Y. Koyama, T. Mori, M. Hattori, K. Yamamoto, T. Okado, Z.‐D. Huang, T. Minato, C. Tassel, J. Kim, Y. Kobayashi, T. Abe, H. Kageyama, Y. Uchimoto, Sci. Rep. 2014, 4, 5622. | en_US |
dc.identifier.citedreference | J. Muldoon, C. B. Bucur, A. G. Oliver, T. Sugimoto, M. Matsui, H. S. Kim, G. D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 2012, 5, 5941 – 5950; R. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 2014, 5, 1291 – 1311. | en_US |
dc.identifier.citedreference | D. M. Overcash, F. C. Mathers, Trans. Electrochem. Soc. 1933, 64, 305 – 311. | en_US |
dc.identifier.citedreference | W. V. Evans, F. H. Lee, C. H. Lee, J. Am. Chem. Soc. 1935, 57, 489 – 490. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | D. Aurbach, H. Gizbar, A. Schechter, O. Chusid, H. E. Gottlieb, Y. Gofer, I. Goldberg, J. Electrochem. Soc. 2002, 149, A 115 –A 121; | en_US |
dc.identifier.citedreference | Y.‐s. Guo, F. Zhang, J. Yang, F.‐f. Wang, Y. NuLi, S.‐i. Hirano, Energy Environ. Sci. 2012, 5, 9100 – 9106; | en_US |
dc.identifier.citedreference | D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 2000, 407, 724 – 727. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | C. Liebenow, Z. Yang, P. Lobitz, Electrochem. Commun. 2000, 2, 641 – 645; | en_US |
dc.identifier.citedreference | Q. S. Zhao, Y. N. NuLi, Y. S. Guo, J. Yang, J. L. Wang, Electrochim. Acta 2011, 56, 6530 – 6535. | en_US |
dc.identifier.citedreference | C. Liao, B. Guo, D.‐e. Jiang, R. Custelcean, S. M. Mahurin, X.‐G. Sun, S. Dai, J. Mater. Chem. A 2014, 2, 581 – 584. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | F.‐f. Wang, Y.‐s. Guo, J. Yang, Y. Nuli, S.‐i. Hirano, Chem. Commun. 2012, 48, 10763 – 10765; | en_US |
dc.identifier.citedreference | Z. Zhao‐Karger, X. Zhao, O. Fuhr, M. Fichtner, RSC Adv. 2013, 3, 16330 – 16335; | en_US |
dc.identifier.citedreference | H. S. Kim, T. S. Arthur, G. D. Allred, J. Zajicek, J. G. Newman, A. E. Rodnyansky, A. G. Oliver, W. C. Boggess, J. Muldoon, Nat. Commun. 2011, 2, 427; | en_US |
dc.identifier.citedreference | R. E. Doe, R. Han, J. Hwang, A. J. Gmitter, I. Shterenberg, H. D. Yoo, N. Pour, D. Aurbach, Chem. Commun. 2014, 50, 243 – 245; | en_US |
dc.identifier.citedreference | T. Liu, Y. Shao, G. Li, M. Gu, J. Hu, S. Xu, Z. Nie, X. Chen, C. Wang, J. Liu, J. Mater. Chem. A 2014, 2, 3430 – 3438; | en_US |
dc.identifier.citedreference | E. G. Nelson, J. W. Kampf, B. M. Bartlett, Chem. Commun. 2014, 50, 5193 – 5195; | en_US |
dc.identifier.citedreference | O. Mizrahi, N. Amir, E. Pollak, O. Chusid, V. Marks, H. Gottlieb, L. Larush, E. Zinigrad, D. Aurbach, J. Electrochem. Soc. 2008, 155, A 103 –A 109. | en_US |
dc.identifier.citedreference | Y. Gofer, N. Pour, D. Aurbach in Electrolytic Solutions for Rechargeable Magnesium Batteries. Lithium Batteries: Advanced Technologies and Applications, (Eds. B. Scrosati, K. M. Abraham, W. Van Schalkwijk, J. Hassoun ), Wiley:‐VCH:Weinheim, Germany 2013; pp. 328 – 345. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | US Patent 2011159381; | en_US |
dc.identifier.citedreference | D. Lv, T. Xu, P. Saha, M. K. Datta, M. L. Gordin, A. Manivannan, P. N. Kumta, D. Wang, J. Electrochem. Soc. 2013, 160, A 351 –A 355. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | K. Xu., Chem. Rev. 2004, 104, 4303 – 4417; | en_US |
dc.identifier.citedreference | G. T. Burstein, C. Liu, R. M. Souto, S. P. Vines, Corros. Eng. Sci. Technol. 2004, 39, 25 – 30. | en_US |
dc.identifier.citedreference | J. Muldoon, C. B. Bucur, A. G. Oliver, J. Zajicek, G. D. Allred, W. C. Boggess, Energy Environ. Sci. 2013, 6, 482 – 487. | en_US |
dc.identifier.citedreference | Y. Guo, J. Yang, Y. NuLi, J. Wang, Electrochem. Commun. 2010, 12, 1671 – 1673. | en_US |
dc.identifier.citedreference | en_US | |
dc.identifier.citedreference | H. C. Brown, S. Krishnamurthy, Tetrahedron 1979, 35, 567 – 607; | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.