Show simple item record

Species‐specific transpiration responses to intermediate disturbance in a northern hardwood forest

dc.contributor.authorMatheny, Ashley M.en_US
dc.contributor.authorBohrer, Gilen_US
dc.contributor.authorVogel, Christoph S.en_US
dc.contributor.authorMorin, Timothy H.en_US
dc.contributor.authorHe, Linglien_US
dc.contributor.authorFrasson, Renato Prata de Moraesen_US
dc.contributor.authorMirfenderesgi, Golnazalsadaten_US
dc.contributor.authorSchäfer, Karina V. R.en_US
dc.contributor.authorGough, Christopher M.en_US
dc.contributor.authorIvanov, Valeriy Y.en_US
dc.contributor.authorCurtis, Peter S.en_US
dc.date.accessioned2015-02-19T15:41:00Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-02-19T15:41:00Z
dc.date.issued2014-12en_US
dc.identifier.citationMatheny, Ashley M.; Bohrer, Gil; Vogel, Christoph S.; Morin, Timothy H.; He, Lingli; Frasson, Renato Prata de Moraes; Mirfenderesgi, Golnazalsadat; Schäfer, Karina V. R. ; Gough, Christopher M.; Ivanov, Valeriy Y.; Curtis, Peter S. (2014). "Speciesâ specific transpiration responses to intermediate disturbance in a northern hardwood forest." Journal of Geophysical Research: Biogeosciences 119(12): 2292-2311.en_US
dc.identifier.issn2169-8953en_US
dc.identifier.issn2169-8961en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110637
dc.description.abstractIntermediate disturbances shape forest structure and composition, which may in turn alter carbon, nitrogen, and water cycling. We used a large‐scale experiment in a forest in northern lower Michigan where we prescribed an intermediate disturbance by stem girdling all canopy‐dominant early successional trees to simulate an accelerated age‐related senescence associated with natural succession. Using 3 years of eddy covariance and sap flux measurements in the disturbed area and an adjacent control plot, we analyzed disturbance‐induced changes to plot level and species‐specific transpiration and stomatal conductance. We found transpiration to be ~15% lower in disturbed plots than in unmanipulated control plots. However, species‐specific responses to changes in microclimate varied. While red oak and white pine showed increases in stomatal conductance during postdisturbance (62.5 and 132.2%, respectively), red maple reduced stomatal conductance by 36.8%. We used the hysteresis between sap flux and vapor pressure deficit to quantify diurnal hydraulic stress incurred by each species in both plots. Red oak, a ring porous anisohydric species, demonstrated the largest mean relative hysteresis, while red maple, bigtooth aspen, and paper birch, all diffuse porous species, had the lowest relative hysteresis. We employed the Penman‐Monteith model for LE to demonstrate that these species‐specific responses to disturbance are not well captured using current modeling strategies and that accounting for changes to leaf area index and plot microclimate are insufficient to fully describe the effects of disturbance on transpiration.Key PointsPlot level scaling of evaporation from sap flux evaluated with eddy fluxDisturbance changes intradaily transpiration dynamicsHydraulic strategy causes species‐specific transpiration differencesen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherisohydric/anisohydricen_US
dc.subject.otherdisturbanceen_US
dc.subject.othersap fluxen_US
dc.subject.otherhysteresisen_US
dc.subject.otherstomatal conductanceen_US
dc.subject.othertranspirationen_US
dc.titleSpecies‐specific transpiration responses to intermediate disturbance in a northern hardwood foresten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110637/1/jgrg20315.pdf
dc.identifier.doi10.1002/2014JG002804en_US
dc.identifier.sourceJournal of Geophysical Research: Biogeosciencesen_US
dc.identifier.citedreferenceReichstein, M., et al. ( 2005 ), On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm, Global Change Biol., 11, 1424 – 1439, doi: 10.1111/j.1365-2486.2005.001002.x.en_US
dc.identifier.citedreferenceRenninger, H. J., K. L. Clark, N. Skowronski, and K. V. R. Schafer ( 2013 ), Effects of a prescribed fire on water use and photosynthetic capacity of pitch pines, Trees Struct Funct., 27, 1115 – 1127, doi: 10.1007/s00468-013-0861-5.en_US
dc.identifier.citedreferenceRoyer, P. D., D. D. Breshears, C. B. Zou, N. S. Cobb, and S. A. Kurc ( 2010 ), Ecohydrological energy inputs in semiarid coniferous gradients: Responses to management‐ and drought‐induced tree reductions, For. Ecol. Manage., 260, 1646 – 1655, doi: 10.1016/j.foreco.2010.07.036.en_US
dc.identifier.citedreferenceRunning, S. W., and J. C. Coughlan ( 1988 ), A general model of forest ecosystem processes for regional applications. 1. Hydrologic balance, canopy gas exchange and primary production processes, Ecol. Modell., 42 ( 2 ), 125 – 154, doi: 10.1016/0304-3800(88)90112-3.en_US
dc.identifier.citedreferenceSchäfer, K. V. R., R. Oren, and J. D. Tenhunen ( 2000 ), The effect of tree height on crown level stomatal conductance, Plant Cell Environ., 23 ( 4 ), 365 – 375, doi: 10.1046/j.1365-3040.2000.00553.x.en_US
dc.identifier.citedreferenceSchäfer, K. V. R., H. J. Renninger, K. L. Clark, and D. Medvigy ( 2013 ), Hydrological responses to defoliation and drought of an upland oak/pine forest, Hydrol. Processes, 28, 6113 – 6123, doi: 10.1002/hyp.10104.en_US
dc.identifier.citedreferenceSchäfer, K. V. R., H. J. Renninger, N. J. Carlo, and D. W. Vanderklein ( 2014 ), Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain, Front. Plant Sci., 5, doi: 10.3389/fpls.2014.00294.en_US
dc.identifier.citedreferenceSchmid, H. P., H. B. Su, C. S. Vogel, and P. S. Curtis ( 2003 ), Ecosystem‐atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan, J. Geophys. Res., 108 ( D14 ), 4417, doi: 10.1029/2002JD003011.en_US
dc.identifier.citedreferenceSchnitzer, S. A., et al. ( 2012 ), Liana abundance, diversity, and distribution on Barro Colorado Island, Panama, PLoS One, 7, e5214, doi: 10.1371/journal.pone.0052114.en_US
dc.identifier.citedreferenceSellers, P. J., M. D. Heiser, F. G. Hall, S. J. Goetz, D. E. Strebel, S. B. Verma, R. L. Desjardins, P. M. Schuepp, and J. I. MacPherson ( 1995 ), Effects of spatial variability in topography, vegetation cover and soil moisture on area‐averaged surface fluxes: A case study using the FIFE 1989 data, J. Geophys. Res., 100 ( D12 ), 25,607 – 25,629, doi: 10.1029/95JD02205.en_US
dc.identifier.citedreferenceShinohara, Y., K. Tsuruta, A. Ogura, F. Noto, H. Komatsu, K. Otsuki, and T. Maruyama ( 2013 ), Azimuthal and radial variations in sap flux density and effects on stand‐scale transpiration estimates in a Japanese cedar forest, Tree Physiol., 33, 550 – 558, doi: 10.1093/treephys/tpt029.en_US
dc.identifier.citedreferenceSimard, M., E. N. Powell, K. F. Raffa, and M. G. Turner ( 2012 ), What explains landscape patterns of tree mortality caused by bark beetle outbreaks in Greater Yellowstone?, Global Ecol. Biogeogr., 21, 556 – 567, doi: 10.1111/j.1466-8238.2011.00710.x.en_US
dc.identifier.citedreferenceStannard, D. I. ( 1993 ), Comparison of Penman‐Monteith, Shuttleworth‐Wallace and modified Priestly‐Taylor evapotranspiration models for wildland vegetation in semiarid rangeland, Water Resour. Res., 29 ( 5 ), 1379 – 1392, doi: 10.1029/93WR00333.en_US
dc.identifier.citedreferenceStephens, S. L., J. J. Moghaddas, B. R. Hartsough, E. E. Y. Moghaddas, and N. E. Clinton ( 2009 ), Fuel treatment effects on stand‐level carbon pools, treatment‐related emissions, and fire risk in a Sierra Nevada mixed‐conifer forest, Can. J. For. Res., 39, 1538 – 1547, doi: 10.1139/x09-081.en_US
dc.identifier.citedreferenceTaneda, H., and J. S. Sperry ( 2008 ), A case‐study of water transport in co‐occurring ring‐ versus diffuse‐porous trees: Contrasts in water‐status, conducting capacity, cavitation and vessel refilling, Tree Physiol., 28, 1641 – 1651.en_US
dc.identifier.citedreferenceThom, A. S. ( 1972 ), Momentum, mass and heat exchange of vegetation, Q. J. R. Meteorol. Soc., 98 ( 415 ), 124 – 134, doi: 10.1002/qj.49709841510.en_US
dc.identifier.citedreferenceThompson, S. E., C. J. Harman, A. G. Konings, M. Sivapalan, A. Neal, and P. A. Troch ( 2011 ), Comparative hydrology across AmeriFlux sites: The variable roles of climate, vegetation, and groundwater, Water Resour. Res., 47, W00J07, doi: 10.1029/2010WR009797.en_US
dc.identifier.citedreferenceThomsen, J., G. Bohrer, A. M. Matheny, V. Y. Ivanov, L. He, H. Renninger, and K. Schäfer ( 2013 ), Contrasting hydraulic strategies during dry soil conditions in Quercus rubra and Acer rubrum in a sandy site in Michigan, Forests, 4, 1106 – 1120.en_US
dc.identifier.citedreferenceTyree, M. T., and J. S. Sperry ( 1989 ), Vulnerability of xylem to cavitation and embolism, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 19 – 36.en_US
dc.identifier.citedreferenceTyree, M. T., and M. H. Zimmermann ( 2002 ), Xylem structure and the ascent of sap, in Xylem Structure and the Ascent of Sap, edited by T. E. Timell, Springer, New York.en_US
dc.identifier.citedreferenceUnsworth, M. H., N. Phillips, T. Link, B. J. Bond, M. Falk, M. E. Harmon, T. M. Hinckley, D. Marks, and K. T. P. U ( 2004 ), Components and controls of water flux in an old‐growth Douglas‐fir‐western hemlock ecosystem, Ecosystems, 7, 468 – 481, doi: 10.1007/s10021-004-0138-3.en_US
dc.identifier.citedreferenceUriarte, M., J. S. Clark, J. K. Zimmerman, L. S. Comita, J. Forero‐Montana, and J. Thompson ( 2012 ), Multidimensional trade‐offs in species responses to disturbance: Implications for diversity in a subtropical forest, Ecology, 93, 191 – 205.en_US
dc.identifier.citedreferenceVerbeeck, H., K. Steppe, N. Nadezhdina, M. O. De Beeck, G. Deckmyn, L. Meiresonne, R. Lemeur, J. Cermak, R. Ceulemans, and I. A. Janssens ( 2007a ), Model analysis of the effects of atmospheric drivers on storage water use in Scots pine, Biogeosciences, 4, 657 – 671.en_US
dc.identifier.citedreferenceVerbeeck, H., K. Steppe, N. Nadezhdina, M. Op de Beeck, G. Deckmyn, L. Meiresonne, R. Lemeur, J. Cermak, R. Ceulemans, and I. A. Janssens ( 2007b ), Stored water use and transpiration in Scots pine: A modeling analysis with ANAFORE, Tree Physiol., 27, 1671 – 1685.en_US
dc.identifier.citedreferenceWebb, E. K., G. I. Pearman, and R. Leuning ( 1980 ), Correction of flux measurements for density effects due to heat and water‐vapor transfer, Q. J. R. Meteorol. Soc., 106 ( 447 ), 85 – 100, doi: 10.1002/qj.49710644707.en_US
dc.identifier.citedreferenceWebster, C. R., and C. G. Lorimer ( 2003 ), Comparative growing space efficiency of four tree species in mixed conifer‐hardwood forests, For. Ecol. Manage., 177 ( 1‐3 ), 361 – 377, doi: 10.1016/s0378-1127(02)00394-8.en_US
dc.identifier.citedreferenceWeng, E. S., and Y. Q. Luo ( 2008 ), Soil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis, J. Geophys. Res., 113, G03003, doi: 10.1029/2007JG000539.en_US
dc.identifier.citedreferenceWu, Y. P., S. G. Liu, and O. I. Abdul‐Aziz ( 2012 ), Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT, Clim. Change, 110, 977 – 1003, doi: 10.1007/s10584-011-0087-8.en_US
dc.identifier.citedreferenceWullschleger, S. D., R. J. Norby, and C. A. Gunderson ( 1992 ), Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long‐term carbon dioxide enrichment in the field, New Phytol., 121 ( 4 ), 515 – 523, doi: 10.1111/j.1469-8137.1992.tb01121.x.en_US
dc.identifier.citedreferenceWullschleger, S. D., P. J. Hanson, and D. E. Todd ( 2001 ), Transpiration from a multi‐species deciduous forest as estimated by xylem sap flow techniques, For. Ecol. Manage., 143 ( 1‐3 ), 205 – 213, doi: 10.1016/s0378-1127(00)00518-1.en_US
dc.identifier.citedreferenceZhang, Q., S. Manzoni, G. G. Katul, A. Porporato, and D. Yang ( 2014 ), The hysteretic evapotranspiration—Vapor pressure deficit relation, J. Geophys. Res. Biogeosci., 119, 125 – 140, doi: 10.1002/2013JG002484.en_US
dc.identifier.citedreferenceAber, J. D., J. Pastor, and J. M. Melillo ( 1982 ), Changes in forest canopy structure along a site quality gradient in southern Wisconsin, Am. Midl. Nat., 108 ( 2 ), 256 – 265, doi: 10.2307/2425486.en_US
dc.identifier.citedreferenceAllen, C. D., et al. ( 2010 ), A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests, For. Ecol. Manage., 259, 660 – 684, doi: 10.1016/j.foreco.2009.09.001.en_US
dc.identifier.citedreferenceAndrieu, C., N. de Freitas, A. Doucet, and M. Jordan ( 2003 ), An introduction to MCMC for machine learning, Mach. Learn., 50 ( 1‐2 ), 5 – 43, doi: 10.1023/A:1020281327116.en_US
dc.identifier.citedreferenceAsase, A., B. K. Asiatokor, and K. Ofori‐Frimpong ( 2014 ), Effects of selective logging on tree diversity and some soil characteristics in a tropical forest in southwest Ghana, J. For. Res., 25, 171 – 176, doi: 10.1007/s11676-014-0443-4.en_US
dc.identifier.citedreferenceAsner, G. P., M. Keller, R. Pereira, J. C. Zweede, and J. N. M. Silva ( 2004 ), Canopy damage and recovery after selective logging in Amazonia: Field and satellite studies, Ecol. Appl., 14, S280 – S298.en_US
dc.identifier.citedreferenceBaldocchi, D. D. ( 2005 ), The role of biodiversity on the evaporation of forests, in Forest Diversity and Function: Temperate and Boreal Systems, edited by M. SchererLorenzen, C. Korner, and E. D. Schulze, pp. 131 – 148, Springer, Berlin.en_US
dc.identifier.citedreferenceBohrer, G., H. Mourad, T. A. Laursen, D. Drewry, R. Avissar, D. Poggi, R. Oren, and G. G. Katul ( 2005 ), Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics, Water Resour. Res., 41, W11404, doi: 10.1029/2005WR004181.en_US
dc.identifier.citedreferenceBohrer, G., G. G. Katul, R. L. Walko, and R. Avissar ( 2009 ), Exploring the effects of microscale structural heterogeneity of forest canopies using large‐eddy simulations, Boundary Layer Meteorol., 132, 351 – 382, doi: 10.1007/s10546-009-9404-4.en_US
dc.identifier.citedreferenceBovard, B. D., P. S. Curtis, C. S. Vogel, H.‐B. Su, and H. P. Schmid ( 2005 ), Environmental controls on sap flow in a northern hardwood forest, Tree Physiol., 25, 31 – 38.en_US
dc.identifier.citedreferenceChapin, F. S. ( 2003 ), Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change, Ann. Bot., 91 ( 4 ), 455 – 463, doi: 10.1093/aob/mcg041.en_US
dc.identifier.citedreferenceChapman, J. W., and S. T. Gower ( 1991 ), Aboveground production and canopy dynamics in sugar maple and red oak trees in southwestern Wisconsin, Can. J. For. Res., 21 ( 10 ), 1533 – 1543, doi: 10.1139/x91-214.en_US
dc.identifier.citedreferenceChen, L. X., Z. Q. Zhang, Z. D. Li, J. W. Tang, P. Caldwell, and W. J. Zhang ( 2011 ), Biophysical control of whole tree transpiration under an urban environment in Northern China, J. Hydrol., 402, 388 – 400, doi: 10.1016/j.jhydrol.2011.03.034.en_US
dc.identifier.citedreferenceChoat, B., et al. ( 2012 ), Global convergence in the vulnerability of forests to drought, Nature, 491, 752 – 756, doi: 10.1038/nature11688.en_US
dc.identifier.citedreferenceClearwater, M. J., F. C. Meinzer, J. L. Andrade, G. Goldstein, and N. M. Holbrook ( 1999 ), Potential errors in measurement of nonuniform sap flow using heat dissipation probes, Tree Physiol., 19 ( 10 ), 681 – 687.en_US
dc.identifier.citedreferenceDamour, G., T. Simonneau, H. Cochard, and L. Urban ( 2010 ), An overview of models of stomatal conductance at the leaf level, Plant Cell Environ., 33, 1419 – 1438, doi: 10.1111/j.1365-3040.2010.02181.x.en_US
dc.identifier.citedreferenceDetto, M., and G. G. Katul ( 2007 ), Simplified expressions for adjusting higher‐order turbulent statistics obtained from open path gas analyzers, Boundary Layer Meteorol., 122, 205 – 216, doi: 10.1007/s10546-006-9105-1.en_US
dc.identifier.citedreferenceDetto, M., N. Montaldo, J. D. Albertson, M. Mancini, and G. Katul ( 2006 ), Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy, Water Resour. Res., 42, W08419, doi: 10.1029/2005WR004693.en_US
dc.identifier.citedreferenceDietze, M. C., M. S. Wolosin, and J. S. Clark ( 2008 ), Capturing diversity and interspecific variability in allometries: A hierarchical approach, For. Ecol. Manage., 256, 1939 – 1948, doi: 10.1016/j.foreco.2008.07.034.en_US
dc.identifier.citedreferenceEnquist, B. J. ( 2002 ), Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems, Tree Physiol., 22 ( 15‐16 ), 1045 – 1064.en_US
dc.identifier.citedreferenceErshadi, A., M. F. McCabe, J. P. Evans, N. W. Chaney, and E. F. Wood ( 2014 ), Multi‐site evaluation of terrestrial evaporation models using FLUXNET data, Agric. For. Meteorol., 187, 46 – 61, doi: 10.1016/j.agrformet.2013.11.008.en_US
dc.identifier.citedreferenceEwers, B. E., and R. Oren ( 2000 ), Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements, Tree Physiol., 20 ( 9 ), 579 – 589.en_US
dc.identifier.citedreferenceEwers, B. E., D. S. Mackay, J. Tang, P. V. Bolstad, and S. Samanta ( 2008 ), Intercomparison of sugar maple ( Acer saccharum Marsh.) stand transpiration responses to environmental conditions from the Western Great Lakes Region of the United States, Agric. For. Meteorol., 148, 231 – 246, doi: 10.1016/j.agrformet.2007.08.003.en_US
dc.identifier.citedreferenceFatichi, S., and V. Y. Ivanov ( 2014 ), Interannual variability of evapotranspiration and vegetation productivity, Water Resour. Res., 50, 3275 – 3294, doi: 10.1002/2013wr015044.en_US
dc.identifier.citedreferenceFinnigan, J. J. ( 2004 ), A re‐evaluation of long‐term flux measurement techniques. Part II: Coordinate systems, Boundary Layer Meteorol., 113, 1 – 41, doi: 10.1023/b:boun.0000037348.64252.45.en_US
dc.identifier.citedreferenceFisher, J. B., T. A. DeBiase, Y. Qi, M. Xu, and A. H. Goldstein ( 2005 ), Evapotranspiration models compared on a Sierra Nevada forest ecosystem, Environ. Modell. Softw., 20, 783 – 796, doi: 10.1016/j.envsoft.2004.04.009.en_US
dc.identifier.citedreferenceFord, C. R., R. M. Hubbard, B. D. Kloeppel, and J. M. Vose ( 2007 ), A comparison of sap flux‐based evapotranspiration estimates with catchment‐scale water balance, Agric. For. Meteorol., 145, 176 – 185, doi: 10.1016/j.agrformet.2007.04.010.en_US
dc.identifier.citedreferenceFord, C. R., R. M. Hubbard, and J. M. Vose ( 2011 ), Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians, Ecohydrology, 4, 183 – 195, doi: 10.1002/eco.136.en_US
dc.identifier.citedreferenceForrester, J. A., D. J. Mladenoff, S. T. Gower, and J. L. Stoffel ( 2012 ), Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps, For. Ecol. Manage., 265, 124 – 132, doi: 10.1016/j.foreco.2011.10.038.en_US
dc.identifier.citedreferenceGarrity, S. R., K. Meyer, K. D. Maurer, B. Hardiman, and G. Bohrer ( 2012 ), Estimating plot‐level tree structure in a deciduous forest by combining allometric equations, spatial wavelet analysis and airborne LiDAR, Remote Sens Lett., 3, 443 – 451, doi: 10.1080/01431161.2011.618814.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, H. P. Schmid, H. B. Su, and P. S. Curtis ( 2008 ), Multi‐year convergence of biometric and meteorological estimates of forest carbon storage, Agric. For. Meteorol., 148, 158 – 170, doi: 10.1016/j.agrformet.2007.08.004.en_US
dc.identifier.citedreferenceGough, C. M., C. S. Vogel, B. Hardiman, and P. S. Curtis ( 2010 ), Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession, For. Ecol. Manage., 260, 36 – 41, doi: 10.1016/j.foreco.2010.03.027.en_US
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis ( 2013 ), Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest, Ecol. Appl., 23, 1202 – 1215, doi: 10.1890/12-1554.1.en_US
dc.identifier.citedreferenceGranier, A. ( 1987 ), Evaluation of transpiration in a Douglas‐Fir stand by means of sap flow measurements, Tree Physiol., 3 ( 4 ), 309 – 319.en_US
dc.identifier.citedreferenceGrant, R. F., et al. ( 2006 ), Intercomparison of techniques to model water stress effects on CO 2 and energy exchange in temperate and boreal deciduous forests, Ecol. Modell., 196, 289 – 312, doi: 10.1016/j.ecolmodel.2006.02.015.en_US
dc.identifier.citedreferenceHardiman, B. S., G. Bohrer, C. M. Gough, and P. S. Curtis ( 2013 ), Canopy structural changes following widespread mortality of canopy dominant trees, Forests, 4, 537 – 552, doi: 10.3390/f4030537.en_US
dc.identifier.citedreferenceHe, L. L., V. Y. Ivanov, G. Bohrer, J. E. Thomsen, C. S. Vogel, and M. Moghaddam ( 2013 ), Temporal dynamics of soil moisture in a northern temperate mixed successional forest after a prescribed intermediate disturbance, Agric. For. Meteorol., 180, 22 – 33, doi: 10.1016/j.agrformet.2013.04.014.en_US
dc.identifier.citedreferenceHerms, D. A., and D. G. McCullough ( 2014 ), Emerald ash borer invasion of North America: History, biology, ecology, impacts, and management, in Annual Review of Entomology, edited by M. R. Berenbaum, pp. 13 – 30, Annual Reviews, Palo Alto, Calif.en_US
dc.identifier.citedreferenceHuang, C. Y., and W. R. L. Anderegg ( 2012 ), Large drought‐induced aboveground live biomass losses in southern Rocky Mountain aspen forests, Global Change Biol., 18, 1016 – 1027, doi: 10.1111/j.1365-2486.2011.02592.x.en_US
dc.identifier.citedreferenceJames, S. A., M. J. Clearwater, F. C. Meinzer, and G. Goldstein ( 2002 ), Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood, Tree Physiol., 22 ( 4 ), 277 – 283.en_US
dc.identifier.citedreferenceJanott, M., S. Gayler, A. Gessler, M. Javaux, C. Klier, and E. Priesack ( 2011 ), A one‐dimensional model of water flow in soil‐plant systems based on plant architecture, Plant Soil, 341, 233 – 256, doi: 10.1007/s11104-010-0639-0.en_US
dc.identifier.citedreferenceJasechko, S., Z. D. Sharp, J. J. Gibson, S. J. Birks, Y. Yi, and P. J. Fawcett ( 2013 ), Terrestrial water fluxes dominated by transpiration, Nature, 496, 347 – 350, doi: 10.1038/nature11983.en_US
dc.identifier.citedreferenceKaimal, J. C., and J. E. Gaynor ( 1991 ), Another look at sonic thermometry, Agric. For. Meteorol., 56 ( 4 ), 401 – 410, doi: 10.1007/BF00119215.en_US
dc.identifier.citedreferenceKatul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange ( 2012 ), Evapotranspiration: A process driving mass transport and energy exchange in the soil‐plant‐atmosphere‐climate system, Rev. Geophys., 50, RG3002, doi: 10.1029/2011RG000366.en_US
dc.identifier.citedreferenceKitao, M., T. T. Lei, T. Koike, H. Tobita, and Y. Maruyama ( 2006 ), Tradeoff between shade adaptation and mitigation of photoinhibition in leaves of Quercus mongolica and Acer mono acclimated to deep shade, Tree Physiol., 26, 441 – 448.en_US
dc.identifier.citedreferenceKucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters, C. Young‐Molling, N. Ramankutty, J. M. Norman, and S. T. Gower ( 2000 ), Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure, Global Biogeochem. Cycles, 14 ( 3 ), 795 – 825, doi: 10.1029/1999GB001138.en_US
dc.identifier.citedreferenceLeuning, R. ( 1995 ), A critical appraisal of a combined stomatal‐photosynthesis model for C3 plants, Plant Cell Environ., 18 ( 4 ), 339 – 355.en_US
dc.identifier.citedreferenceLeuning, R., F. M. Kelliher, D. G. G. Depury, and E. D. Schulze ( 1995 ), Leaf nitrogen, photosynthesis, conductance and transpiration—Scaling from leaves to canopies, Plant Cell Environ., 18 ( 10 ), 1183 – 1200, doi: 10.1111/j.1365-3040.1995.tb00628.x.en_US
dc.identifier.citedreferenceLiebethal, C., B. Huwe, and T. Foken ( 2005 ), Sensitivity analysis for two ground heat flux calculation approaches, Agric. For. Meteorol., 132, 253 – 262, doi: 10.1016/j.agrformet.2005.08.001.en_US
dc.identifier.citedreferenceManzoni, S., G. Vico, G. Katul, S. Palmroth, R. B. Jackson, and A. Porporato ( 2013 ), Hydraulic limits on maximum plant transpiration and the emergence of the safety‐efficiency trade‐off, New Phytol., 198, 169 – 178, doi: 10.1111/nph.12126.en_US
dc.identifier.citedreferenceMassman, W. J. ( 2000 ), A simple method for estimating frequency response corrections for eddy covariance systems, Agric. For. Meteorol., 104 ( 3 ), 185 – 198, doi: 10.1016/s0168-1923(00)00164-7.en_US
dc.identifier.citedreferenceMatheny, A. M., et al. ( 2014 ), Characterizing the diurnal patterns of errors in the prediction of evapotranspiration by several land‐surface models: An NACP analysis, J. Geophys. Res. Biogeosci., 119, 1458 – 1473, doi: 10.1002/2014JG002623.en_US
dc.identifier.citedreferenceMaurer, K. D., B. S. Hardiman, C. S. Vogel, and G. Bohrer ( 2013 ), Canopy‐structure effects on surface roughness parameters: Observations in a Great Lakes mixed‐deciduous forest, Agric. For. Meteorol., 177, 24 – 34, doi: 10.1016/j.agrformet.2013.04.002.en_US
dc.identifier.citedreferenceMcAdam, S. A. M., and T. J. Brodribb ( 2014 ), Separating active and passive influences on stomatal control of transpiration, Plant Physiol., 164, 1578 – 1586, doi: 10.1104/pp.113.231944.en_US
dc.identifier.citedreferenceMcCulloh, K. A., and J. S. Sperry ( 2005 ), Patterns in hydraulic architecture and their implications for transport efficiency, Tree Physiol., 25, 257 – 267.en_US
dc.identifier.citedreferenceMcCulloh, K. A., D. M. Johnson, F. C. Meinzer, S. L. Voelker, B. Lachenbruch, and J.‐C. Domec ( 2012 ), Hydraulic architecture of two species differing in wood density: Opposing strategies in co‐occurring tropical pioneer trees, Plant Cell Environ., 35, 116 – 125, doi: 10.1111/j.1365-3040.2011.02421.x.en_US
dc.identifier.citedreferenceMcDowell, N., et al. ( 2008 ), Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?, New Phytol., 178, 719 – 739, doi: 10.1111/j.1469-8137.2008.02436.x.en_US
dc.identifier.citedreferenceMcNaughton, K. G., and P. G. Jarvis ( 1986 ), Stomatal control of transpiration—Scaling up from leaf to region, Adv. Ecol. Res., 15, 1 – 49, doi: 10.1016/s0065-2504(08)60119-1.en_US
dc.identifier.citedreferenceMiller, G. R., X. Y. Chen, Y. Rubin, S. Y. Ma, and D. D. Baldocchi ( 2010 ), Groundwater uptake by woody vegetation in a semiarid oak savanna, Water Resour. Res., 46, 14, doi: 10.1029/2009WR008902.en_US
dc.identifier.citedreferenceMonteith, J. L. ( 1965 ), Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205 – 234.en_US
dc.identifier.citedreferenceMoore, G. W., B. J. Bond, J. A. Jones, N. Phillips, and F. C. Meinzer ( 2004 ), Structural and compositional controls on transpiration in 40‐and 450‐year‐old riparian forests in western Oregon, USA, Tree Physiol., 24, 481 – 491.en_US
dc.identifier.citedreferenceMorin, T. H., G. Bohrer, L. Naor‐Azrieli, S. Mesi, W. T. Kenny, W. J. Mitsch, and K. V. R. Schäfer ( 2014 ), The seasonal and diurnal dynamics of methane flux at a created urban wetland, Ecol. Civ Eng., doi: 10.1016/j.ecoleng.2014.02.002.en_US
dc.identifier.citedreferenceNadezhdina, N., J. Cermak, and R. Ceulemans ( 2002 ), Radial patterns of sap flow in woody stems of dominant and understory species: Scaling errors associated with positioning of sensors, Tree Physiol., 22 ( 13 ), 907 – 918.en_US
dc.identifier.citedreferenceNave, L. E., et al. ( 2011 ), Disturbance and the resilience of coupled carbon and nitrogen cycling in a north temperate forest, J. Geophys. Res., 116, G04016, doi: 10.1029/2011JG001758.en_US
dc.identifier.citedreferenceNovick, K., S. Brantley, C. F. Miniat, J. Walker, and J. M. Vose ( 2014 ), Inferring the contribution of advection to total ecosystem scalar fluxes over a tall forest in complex terrain, Agric. For. Meteorol., 185, 1 – 13, doi: 10.1016/j.agrformet.2013.10.010.en_US
dc.identifier.citedreferenceO'Brien, J. J., S. F. Oberbauer, and D. B. Clark ( 2004 ), Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest, Plant Cell Environ., 27 ( 5 ), 551 – 567, doi: 10.1111/j.1365-3040.2003.01160.x.en_US
dc.identifier.citedreferenceO'Grady, A. P., D. Worledge, and M. Battaglia ( 2008 ), Constraints on transpiration of Eucalyptus globulus in southern Tasmania, Australia, Agric. For. Meteorol., 148, 453 – 465, doi: 10.1016/j.agrformet.2007.10.006.en_US
dc.identifier.citedreferenceOishi, A. C., R. Oren, and P. C. Stoy ( 2008 ), Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements, Agric. For. Meteorol., 148, 1719 – 1732, doi: 10.1016/j.agrformet.2008.06.013.en_US
dc.identifier.citedreferencePan, Y., et al. ( 2011 ), A large and persistent carbon sink in the world's forests, Science, 333, 988 – 993, doi: 10.1126/science.1201609.en_US
dc.identifier.citedreferencePastor, J., J. D. Aber, C. A. McClaugherty, and J. M. Melillo ( 1982 ), Geology, soils and vegetation of Blackhawk Island, Wisconsin, Am. Midl. Nat., 108 ( 2 ), 266 – 277, doi: 10.2307/2425487.en_US
dc.identifier.citedreferencePearcy, R. W., J. R. Ehleringer, H. A. Mooney, and P. W. Rundel (Eds.) ( 1989 ), Plant Physiological Ecology, pp. 137 – 142, Chapman and Hall, New York.en_US
dc.identifier.citedreferencePenman, H. L. ( 1948 ), Natural Evaporation from open water, bare soil and grass, Proc. R. Soc. A, 193 ( 1032 ), 120 – 145, doi: 10.1098/rspa.1948.0037.en_US
dc.identifier.citedreferencePhillips, N., and R. Oren ( 1998 ), A comparison of daily representations of canopy conductance based on two conditional time‐averaging methods and the dependence of daily conductance on environmental factors, Ann. Sci. For., 55 ( 1‐2 ), 217 – 235, doi: 10.1051/forest:19980113.en_US
dc.identifier.citedreferenceVan Genuchten, M. T. ( 1980 ), A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44 ( 5 ), 892 – 898.en_US
dc.identifier.citedreferencePhillips, N., R. Oren, and R. Zimmermann ( 1996 ), Radial patterns of xylem sap flow in non‐, diffuse‐ and ring‐porous tree species, Plant Cell Environ., 19 ( 8 ), 983 – 990, doi: 10.1111/j.1365-3040.1996.tb00463.x.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.