Show simple item record

Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields

dc.contributor.authorXu, Shaosuien_US
dc.contributor.authorLiemohn, Michael W.en_US
dc.contributor.authorMitchell, David L.en_US
dc.date.accessioned2015-02-19T15:41:07Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2015-02-19T15:41:07Z
dc.date.issued2014-12en_US
dc.identifier.citationXu, Shaosui; Liemohn, Michael W.; Mitchell, David L. (2014). "Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields." Journal of Geophysical Research: Space Physics 119(12): 10100-10115.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110644
dc.description.abstractMeasurements made by the magnetometer/electron reflectometer on board the Mars Global Surveyor spacecraft have shown spatially localized enhancements in electron fluxes over the strong crustal fields on both the dayside and night, which are used to identify the cusps in between the closed magnetic fields. This paper provides a comprehensive statistical study on the occurrence rate of dayside solar wind/magnetosheath precipitation over the strong crustal fields. Also, the occurrence rate's dependence on the magnetic elevation angles and the solar zenith angle is presented. A seasonal variation of the precipitation is also expected and found, due to both the tilt and the orbital eccentricity of Mars. The maximum occurrence rate is 40%, when the solar zenith angles are small and the magnetic fields are nearly vertical. Finally, the energy flux deposition of the solar wind electrons is calculated as well, which is 0.1%–2% of solar EUV flux input.Key PointsThe occurrence rate of solar wind electron precipitation into Martian atmosphereOccurrence rate's dependence on magnetic elevation angle and solar zenith angleEnergy deposition of solar wind electronsen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otheroccurrence rateen_US
dc.subject.othercuspen_US
dc.subject.otherMarsen_US
dc.subject.othersolar wind electronen_US
dc.subject.otherprecipitationen_US
dc.subject.otherstrong crustal fielden_US
dc.titleSolar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fieldsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110644/1/jgra51520.pdf
dc.identifier.doi10.1002/2014JA020363en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceLillis, R. J., and D. A. Brain ( 2013 ), Nightside electron precipitation at mars: Geographic variability and dependence on solar wind conditions, J. Geophys. Res. Space Physics, 118, 3546 – 3556, doi: 10.1002/jgra.50171.en_US
dc.identifier.citedreferenceHantsch, M., and S. Bauer ( 1990 ), Solar control of the Mars ionosphere, Planet. Space Sci., 38 ( 4 ), 539 – 542.en_US
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2005 ), Three‐dimensional fluid simulations of plasma asymmetries in the Martian magnetotail caused by the magnetic anomalies, J. Geophys. Res., 110, A07226, doi: 10.1029/2003JA010315.en_US
dc.identifier.citedreferenceKhazanov, G., and M. Liemohn ( 1995 ), Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100 ( A6 ), 9669 – 9681.en_US
dc.identifier.citedreferenceKrymskii, A., T. Breus, N. Ness, M. Acuña, J. Connerney, D. Crider, D. Mitchell, and S. Bauer ( 2002 ), Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J. Geophys. Res., 107 ( A9 ), 1245, doi: 10.1029/2001JA000239.en_US
dc.identifier.citedreferenceKrymskii, A., T. Breus, N. Ness, D. Hinson, and D. Bojkov ( 2003 ), Effect of crustal magnetic fields on the near terminator ionosphere at Mars: Comparison of in situ magnetic field measurements with the data of radio science experiments on board Mars Global Surveyor, J. Geophys. Res., 108 ( A12 ), 1431, doi: 10.1029/2002JA009662.en_US
dc.identifier.citedreferenceKrymskii, A., N. Ness, D. Crider, T. Breus, M. Acuña, and D. Hinson ( 2004 ), Solar wind interaction with the ionosphere/atmosphere and crustal magnetic fields at Mars: Mars global surveyor magnetometer/electron reflectometer, radio science, and accelerometer data, J. Geophys. Res., 109, A11306, doi: 10.1029/2004JA010420.en_US
dc.identifier.citedreferenceLeblanc, F., et al. ( 2008 ), Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: Simultaneous ASPERA‐3 and MARSIS measurements, J. Geophys. Res., 113, A08311, doi: 10.1029/2008JA013033.en_US
dc.identifier.citedreferenceLiemohn, M., G. Khazanov, T. Moore, and S. Guiter ( 1997 ), Self‐consistent superthermal electron effects on plasmaspheric refilling, J. Geophys. Res., 102 ( A4 ), 7523 – 7536.en_US
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at mars by the mgs magnetometer/electron reflectometer instrument with a b field–dependent transport code, J. Geophys. Res., 108 ( E12 ), 5134, doi: 10.1029/2003JE002158.en_US
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006 ), Numerical interpretation of high‐altitude photoelectron observations, Icarus, 182 ( 2 ), 383 – 395.en_US
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, R. A. Frahm, X. Fang, J. U. Kozyra, A. F. Nagy, J. D. Winningham, J. R. Sharber, S. Barabash, and R. Lundin ( 2007 ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, in The Mars Plasma Environment, pp. 63 – 76, Springer, New York.en_US
dc.identifier.citedreferenceMa, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Toth ( 2014 ), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272 – 1286, doi: 10.1002/2013JA019402.en_US
dc.identifier.citedreferenceMantas, G. P., and W. B. Hanson ( 1979 ), Photoelectron fluxes in the Martian ionosphere, J. Geophys. Res., 84 ( A2 ), 369 – 385, doi: 10.1029/JA084iA02p00369.en_US
dc.identifier.citedreferenceMitchell, D., R. Lin, C. Mazelle, H. Reme, P. Cloutier, J. Connerney, M. Acuña, and N. Ness ( 2001 ), Probing Mars' crustal magnetic field and ionosphere with the MGS electron reflectometer, J. Geophys. Res., 106 ( E10 ), 23,419 – 23,427.en_US
dc.identifier.citedreferenceNagy, A., et al. ( 2004 ), The plasma environment of Mars, in Mars Magnetism and Its Interaction with the Solar Wind, pp. 33 – 114, Springer, Netherlands.en_US
dc.identifier.citedreferenceNielsen, E., et al. ( 2007 ), Local plasma processes and enhanced electron densities in the lower ionosphere in magnetic cusp regions on Mars, Planet. Space Sci., 55 ( 14 ), 2164 – 2172.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2000 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Atmospheric and Space Science Series, 59, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceTrantham, M., M. Liemohn, D. Mitchell, and J. Frank ( 2011 ), Photoelectrons on closed crustal field lines at Mars, J. Geophys. Res., 116, A07311, doi: 10.1029/2010JA016231.en_US
dc.identifier.citedreferenceVignes, D., C. Mazelle, H. Rme, M. H. Acuña, J. E. P. Connerney, R. P. Lin, D. L. Mitchell, P. Cloutier, D. H. Crider, and N. F. Ness ( 2000 ), The solar wind interaction with Mars: Locations and shapes of the bow shock and the magnetic pile‐up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor, Geophys. Res. Lett., 27, 49 – 52, doi: 10.1029/1999GL010703.en_US
dc.identifier.citedreferenceWithers, P. ( 2009 ), A review of observed variability in the dayside ionosphere of Mars, Adv. Space Res., 44, 277 – 307, doi: 10.1016/j.asr.2009.04.027.en_US
dc.identifier.citedreferenceWithers, P., M. Mendillo, H. Rishbeth, D. Hinson, and J. Arkani‐Hamed ( 2005 ), Ionospheric characteristics above Martian crustal magnetic anomalies, Geophys. Res. Lett., 32, L16204, doi: 10.1029/2005GL023483.en_US
dc.identifier.citedreferenceWithers, P., K. Fallows, and M. Matta ( 2014 ), Predictions of electron temperatures in the Mars ionosphere and their effects on electron densities, Geophys. Res. Lett., 41, 2681 – 2686, doi: 10.1002/2014GL059683.en_US
dc.identifier.citedreferenceXu, S., M. W. Liemohn, D. L. Mitchell, and M. D. Smith ( 2014 ), Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms, J. Geophys. Res. Planets, 119, 1689 – 1706, doi: 10.1002/2013JE004594.en_US
dc.identifier.citedreferenceAcuña, M., et al. ( 1992 ), Mars observer magnetic fields investigation, J. Geophys. Res., 97 ( E5 ), 7799 – 7814.en_US
dc.identifier.citedreferenceAcuña, M., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279 ( 5357 ), 1676 – 1680.en_US
dc.identifier.citedreferenceBarabash, S., et al. ( 2006 ), The analyzer of space plasmas and energetic atoms (ASPERA‐3) for the Mars express mission, Space Sci. Rev., 126 ( 1–4 ), 113 – 164.en_US
dc.identifier.citedreferenceBertaux, J.‐L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S. Stern, B. Sandel, and O. Korablev ( 2005 ), Discovery of an aurora on Mars, Nature, 435 ( 7043 ), 790 – 794.en_US
dc.identifier.citedreferenceBrain, D., F. Bagenal, M. Acuña, and J. Connerney ( 2003 ), Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 108 ( A12 ), 1424, doi: 10.1029/2002JA009482.en_US
dc.identifier.citedreferenceBrain, D., J. Halekas, R. Lillis, D. Mitchell, R. Lin, and D. Crider ( 2005 ), Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32, L18203, doi: 10.1029/2005GL023126.en_US
dc.identifier.citedreferenceBrain, D., J. Halekas, L. Peticolas, R. Lin, J. Luhmann, D. Mitchell, G. Delory, S. Bougher, M. Acuña, and H. Rème ( 2006 ), On the origin of aurorae on Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.en_US
dc.identifier.citedreferenceBrain, D., R. Lillis, D. Mitchell, J. Halekas, and R. Lin ( 2007 ), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi: 10.1029/2007JA012435.en_US
dc.identifier.citedreferenceBrain, D., A. Baker, J. Briggs, J. Eastwood, J. Halekas, and T.‐D. Phan ( 2010 ), Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37, L14108, doi: 10.1029/2010GL043916.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare irradiance spectral model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare irradiance spectral model (FISM): Flare component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.en_US
dc.identifier.citedreferenceChapman, S. ( 1931a ), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth, Proc. Phys. Soc., 43, 26 – 45, doi: 10.1088/0959-5309/43/1/305.en_US
dc.identifier.citedreferenceChapman, S. ( 1931b ), The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth—Part II. Grazing incidence, Proc. Phys. Soc., 43, 483 – 501, doi: 10.1088/0959-5309/43/5/302.en_US
dc.identifier.citedreferenceConnerney, J., M. Acuña, N. Ness, G. Kletetschka, D. Mitchell, R. Lin, and H. Reme ( 2005 ), Tectonic implications of Mars crustal magnetism, Proc. Natl. Acad. Sci. U.S.A., 102 ( 42 ), 14,970 – 14,975.en_US
dc.identifier.citedreferenceCrider, D., et al. ( 2000 ), Evidence of electron impact ionization in the magnetic pileup boundary of Mars, Geophys. Res. Lett., 27 ( 1 ), 45 – 48, doi: 10.1029/1999GL003625.en_US
dc.identifier.citedreferenceCrider, D. H., et al. ( 2002 ), Observations of the latitude dependence of the location of the Martian magnetic pileup boundary, Geophys. Res. Lett., 29 ( 8 ), 1170, doi: 10.1029/2001GL013860.en_US
dc.identifier.citedreferenceDubinin, E., M. Fraenz, J. Woch, J. Winnigham, R. Frahm, R. Lundin, and S. Barabash ( 2008a ), Suprathermal electron fluxes on the nightside of Mars: ASPERA‐3 observations, Planet. Space Sci., 56 ( 6 ), 846 – 851, doi: 10.1016/j.pss.2007.12.010.en_US
dc.identifier.citedreferenceDubinin, E. M., M. Fraenz, J. Woch, E. Roussos, J. D. Winningham, R. A. Frahm, A. Coates, F. Leblanc, R. Lundin, and S. Barabash ( 2008b ), Access of solar wind electrons into the Martian magnetosphere, Ann. Geophys., 26 ( 11 ), 3511 – 3524, doi: 10.5194/angeo-26-3511-2008.en_US
dc.identifier.citedreferenceFox, J. L., and A. Dalgarno ( 1979 ), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84 ( A12 ), 7315 – 7333.en_US
dc.identifier.citedreferenceFrahm, R., et al. ( 2006a ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182 ( 2 ), 371 – 382.en_US
dc.identifier.citedreferenceFrahm, R., et al. ( 2006b ), Locations of atmospheric photoelectron energy peaks within the Mars environment, Space Sci. Rev., 126 ( 1–4 ), 389 – 402.en_US
dc.identifier.citedreferenceGan, L., T. Cravens, and M. Horanyi ( 1990 ), Electrons in the ionopause boundary layer of Venus, J. Geophys. Res., 95 ( A11 ), 19,023 – 19,035.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.