Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures
dc.contributor.author | Yesselman, Joseph D. | en_US |
dc.contributor.author | Horowitz, Scott | en_US |
dc.contributor.author | Brooks, Charles L. | en_US |
dc.contributor.author | Trievel, Raymond C. | en_US |
dc.date.accessioned | 2015-03-05T18:24:17Z | |
dc.date.available | 2016-05-10T20:26:27Z | en |
dc.date.issued | 2015-03 | en_US |
dc.identifier.citation | Yesselman, Joseph D.; Horowitz, Scott; Brooks, Charles L.; Trievel, Raymond C. (2015). "Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures." Proteins: Structure, Function, and Bioinformatics 83(3): 403-410. | en_US |
dc.identifier.issn | 0887-3585 | en_US |
dc.identifier.issn | 1097-0134 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/110709 | |
dc.description.abstract | The propensity of backbone Cα atoms to engage in carbon‐oxygen (CH···O) hydrogen bonding is well‐appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. Proteins 2015; 83:403–410. © 2014 Wiley Periodicals, Inc. | en_US |
dc.publisher | Oxford University Press | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | hydrogen bond | en_US |
dc.subject.other | neutron structure | en_US |
dc.subject.other | molecular dynamics | en_US |
dc.subject.other | quantum mechanics | en_US |
dc.subject.other | CH···O | en_US |
dc.subject.other | CH···O | en_US |
dc.subject.other | CHO | en_US |
dc.subject.other | CH···O CH···O | en_US |
dc.title | Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biological Chemistry | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/110709/1/prot24724-sup-0001-suppinfo01.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/110709/2/prot24724.pdf | |
dc.identifier.doi | 10.1002/prot.24724 | en_US |
dc.identifier.source | Proteins: Structure, Function, and Bioinformatics | en_US |
dc.identifier.citedreference | Babu MM. NCI: a server to identify non‐canonical interactions in protein structures. Nucleic Acids Res 2003; 31: 3345 – 3348. | en_US |
dc.identifier.citedreference | Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. The active site protonation states of perdeuterated Toho‐1 beta‐lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. FEBS Lett 2011; 585: 364 – 368. | en_US |
dc.identifier.citedreference | Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926 – 935. | en_US |
dc.identifier.citedreference | Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545 – 1614. | en_US |
dc.identifier.citedreference | Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical‐integration of Cartesian equations of motion of a system with constraints ‐ molecular‐dynamics of N‐alkanes. J Comput Phys 1977; 23: 327 – 341. | en_US |
dc.identifier.citedreference | Auffinger P, Louise‐May S, Westhof E. Molecular dynamics simulations of solvated yeast tRNA(Asp). Biophys J 1999; 76: 50 – 64. | en_US |
dc.identifier.citedreference | Fleming PJ, Rose GD. Do all backbone polar groups in proteins form hydrogen bonds? Protein Sci 2005; 14: 1911 – 1917. | en_US |
dc.identifier.citedreference | Garcia AE, Sanbonmatsu KY. alpha‐Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci USA 2002; 99: 2782 – 2787. | en_US |
dc.identifier.citedreference | Nose S, Klein ML. Constant pressure molecular‐dynamics for molecular‐systems. Mol Phys 1983; 50: 1055 – 1076. | en_US |
dc.identifier.citedreference | Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577 – 8593. | en_US |
dc.identifier.citedreference | Feig M, Karanicolas J, Brooks CL. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 2004; 22: 377 – 395. | en_US |
dc.identifier.citedreference | Mcdonald IK, Thornton JM. Satisfying hydrogen‐bonding potential in proteins. J Mol Biol 1994; 238: 777 – 793. | en_US |
dc.identifier.citedreference | Durrant JD, McCammon JA. HBonanza: a computer algorithm for molecular‐dynamics‐trajectory hydrogen‐bond analysis. J Mol Graph Model 2011; 31: 5 – 9. | en_US |
dc.identifier.citedreference | Kumar P, Kailasam S, Chakraborty S, Bansal M. MolBridge: a program for identifying nonbonded interactions in small molecules and biomolecular structures. J Appl Cryst 2014; 47: 1772 – 1776. | en_US |
dc.identifier.citedreference | Lindauer K, Bendic C, Suhnel J. HBexplore ‐ A new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. Comput Appl Biosci 1996; 12: 281 – 289. | en_US |
dc.identifier.citedreference | Tiwari A, Panigrahi SK. HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol 2007; 7: 651 – 661. | en_US |
dc.identifier.citedreference | Tina KG, Bhadra R, Srinivasan N. PIC: protein interactions calculator. Nucleic Acids Res 2007; 35 (Web Server issue): W473 – 476. | en_US |
dc.identifier.citedreference | Yang S, Salmon L, Al‐Hashimi HM. Measuring similarity between dynamic ensembles of biomolecules. Nat Methods 2014; 11: 552 – 554. | en_US |
dc.identifier.citedreference | Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007; 23: 1875 – 1882. | en_US |
dc.identifier.citedreference | Ofran Y, Rost B. Analysing six types of protein‐protein interfaces. J Mol Biol 2003; 325: 377 – 387. | en_US |
dc.identifier.citedreference | Scheiner S. Relative strengths of NH center dot center dot O and CH center dot center dot O hydrogen bonds between polypeptide chain segments. J Phys Chem B 2005; 109: 16132 – 16141. | en_US |
dc.identifier.citedreference | Scheiner S, Kar T. Effect of solvent upon CH center dot center dot center dot O hydrogen bonds with implications for protein folding. J Phys Chem B 2005; 109: 3681 – 3689. | en_US |
dc.identifier.citedreference | Karanicolas J, Brooks CL, III. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 2002; 11: 2351 – 2361. | en_US |
dc.identifier.citedreference | Cheung MS, Garcia AE, Onuchic JN. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci USA 2002; 99: 685 – 690. | en_US |
dc.identifier.citedreference | Chen T, Chan HS. Effects of desolvation barriers and sidechains on local‐nonlocal coupling and chevron behaviors in coarse‐grained models of protein folding. Phys Chem Chem Phys 2014; 16: 6460 – 6479. | en_US |
dc.identifier.citedreference | Isom DG, Castaneda CA, Cannon BR, Velu PD, Garcia‐Moreno EB. Charges in the hydrophobic interior of proteins. Proc Natl Acad Sci USA 2010; 107: 16096 – 16100. | en_US |
dc.identifier.citedreference | Isom DG, Cannon BR, Castaneda CA, Robinson A, Garcia‐Moreno B. High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc Natl Acad Sci USA 2008; 105: 17784 – 17788. | en_US |
dc.identifier.citedreference | Desiraju GR, Steiner T. The weak hydrogen bond. Oxford: Oxford University Press; 1999. | en_US |
dc.identifier.citedreference | Horowitz S, Trievel RC. Carbon‐oxygen hydrogen bonding in biological structure and function. J Biol Chem 2012; 287: 41576 – 41582. | en_US |
dc.identifier.citedreference | Horowitz S, Dirk LM, Yesselman JD, Nimtz JS, Adhikari U, Mehl RA, Scheiner S, Houtz RL, Al‐Hashimi HM, Trievel RC. Conservation and functional importance of carbon‐oxygen hydrogen bonding in AdoMet‐dependent methyltransferases. J Am Chem Soc 2013; 135: 15536 – 15548. | en_US |
dc.identifier.citedreference | Gu YL, Kar T, Scheiner S. Fundamental properties of the CH center dot center dot center dot O interaction: is it a true hydrogen bond? J Am Chem Soc 1999; 121: 9411 – 9422. | en_US |
dc.identifier.citedreference | Kryachko ES, Zeegers‐Huyskens T. Theoretical study of the CH center dot center dot center dot O interaction in fluoromethanes center dot H2O and chloromethanes center dot H2O complexes. J Phys Chem A 2001; 105: 7118 – 7125. | en_US |
dc.identifier.citedreference | Steiner T, Desiraju GR. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem Commun 1998: 891 – 892. | en_US |
dc.identifier.citedreference | Steiner T. Influence of C‐H center dot center dot center dot O interactions on the conformation of methyl groups quantified from neutron diffraction data. J Phys Chem A 2000; 104: 433 – 435. | en_US |
dc.identifier.citedreference | Panigrahi SK, Desiraju GR. Strong and weak hydrogen bonds in the protein‐ligand interface. Proteins 2007; 67: 128 – 141. | en_US |
dc.identifier.citedreference | Sarkhel S, Desiraju GR. N ‐ H.O, O ‐ H.O, and C ‐ H.O hydrogen bonds in protein‐ligand complexes: strong and weak interactions in molecular recognition. Proteins: Struct Funct Genet 2004; 54: 247 – 259. | en_US |
dc.identifier.citedreference | Chen JC, Hanson BL, Fisher SZ, Langan P, Kovalevsky AY. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography. Proc Natl Acad Sci USA 2012; 109: 15301 – 15306. | en_US |
dc.identifier.citedreference | Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 2011; 83: 1637 – 1641. | en_US |
dc.identifier.citedreference | Derewenda ZS, Lee L, Derewenda U. The occurrence of C‐H‐center‐dot‐center‐dot‐center‐dot‐O hydrogen‐bonds in proteins. J Mol Biol 1995; 252: 248 – 262. | en_US |
dc.identifier.citedreference | Taylor R, Kennard O. Crystallographic evidence for the existence of C‐H.O, C‐H.N, and C‐H.C1 hydrogen‐bonds. J Am Chem Soc 1982; 104: 5063 – 5070. | en_US |
dc.identifier.citedreference | Balasubramanian R, Chidambaram R, Ramachandran Gn. Potential functions for hydrogen bond interactions II. Formulation of an empirical potential function. Biochim Biophys Acta 1970; 221: 196 – 206. | en_US |
dc.identifier.citedreference | Pierce AC, Sandretto KL, Bemis GW. Kinase inhibitors and the case for CH center dot center dot center dot O hydrogen bonds in protein‐ligand binding. Proteins: Struct Funct Genet 2002; 49: 567 – 576. | en_US |
dc.identifier.citedreference | Kroon J, Kanters JA. Nonlinearity of Hydrogen‐Bonds in Molecular‐Crystals. Nature 1974; 248 ( 5450 ): 667 – 669. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.