Show simple item record

Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures

dc.contributor.authorYesselman, Joseph D.en_US
dc.contributor.authorHorowitz, Scotten_US
dc.contributor.authorBrooks, Charles L.en_US
dc.contributor.authorTrievel, Raymond C.en_US
dc.date.accessioned2015-03-05T18:24:17Z
dc.date.available2016-05-10T20:26:27Zen
dc.date.issued2015-03en_US
dc.identifier.citationYesselman, Joseph D.; Horowitz, Scott; Brooks, Charles L.; Trievel, Raymond C. (2015). "Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures." Proteins: Structure, Function, and Bioinformatics 83(3): 403-410.en_US
dc.identifier.issn0887-3585en_US
dc.identifier.issn1097-0134en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110709
dc.description.abstractThe propensity of backbone Cα atoms to engage in carbon‐oxygen (CH···O) hydrogen bonding is well‐appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. Proteins 2015; 83:403–410. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherOxford University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherhydrogen bonden_US
dc.subject.otherneutron structureen_US
dc.subject.othermolecular dynamicsen_US
dc.subject.otherquantum mechanicsen_US
dc.subject.otherCH···Oen_US
dc.subject.otherCH···Oen_US
dc.subject.otherCHOen_US
dc.subject.otherCH···O CH···Oen_US
dc.titleFrequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structuresen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110709/1/prot24724-sup-0001-suppinfo01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110709/2/prot24724.pdf
dc.identifier.doi10.1002/prot.24724en_US
dc.identifier.sourceProteins: Structure, Function, and Bioinformaticsen_US
dc.identifier.citedreferenceBabu MM. NCI: a server to identify non‐canonical interactions in protein structures. Nucleic Acids Res 2003; 31: 3345 – 3348.en_US
dc.identifier.citedreferenceTomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. The active site protonation states of perdeuterated Toho‐1 beta‐lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. FEBS Lett 2011; 585: 364 – 368.en_US
dc.identifier.citedreferenceJorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983; 79: 926 – 935.en_US
dc.identifier.citedreferenceBrooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M. CHARMM: the biomolecular simulation program. J Comput Chem 2009; 30: 1545 – 1614.en_US
dc.identifier.citedreferenceRyckaert JP, Ciccotti G, Berendsen HJC. Numerical‐integration of Cartesian equations of motion of a system with constraints ‐ molecular‐dynamics of N‐alkanes. J Comput Phys 1977; 23: 327 – 341.en_US
dc.identifier.citedreferenceAuffinger P, Louise‐May S, Westhof E. Molecular dynamics simulations of solvated yeast tRNA(Asp). Biophys J 1999; 76: 50 – 64.en_US
dc.identifier.citedreferenceFleming PJ, Rose GD. Do all backbone polar groups in proteins form hydrogen bonds? Protein Sci 2005; 14: 1911 – 1917.en_US
dc.identifier.citedreferenceGarcia AE, Sanbonmatsu KY. alpha‐Helical stabilization by side chain shielding of backbone hydrogen bonds. Proc Natl Acad Sci USA 2002; 99: 2782 – 2787.en_US
dc.identifier.citedreferenceNose S, Klein ML. Constant pressure molecular‐dynamics for molecular‐systems. Mol Phys 1983; 50: 1055 – 1076.en_US
dc.identifier.citedreferenceEssmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys 1995; 103: 8577 – 8593.en_US
dc.identifier.citedreferenceFeig M, Karanicolas J, Brooks CL. MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J Mol Graph Model 2004; 22: 377 – 395.en_US
dc.identifier.citedreferenceMcdonald IK, Thornton JM. Satisfying hydrogen‐bonding potential in proteins. J Mol Biol 1994; 238: 777 – 793.en_US
dc.identifier.citedreferenceDurrant JD, McCammon JA. HBonanza: a computer algorithm for molecular‐dynamics‐trajectory hydrogen‐bond analysis. J Mol Graph Model 2011; 31: 5 – 9.en_US
dc.identifier.citedreferenceKumar P, Kailasam S, Chakraborty S, Bansal M. MolBridge: a program for identifying nonbonded interactions in small molecules and biomolecular structures. J Appl Cryst 2014; 47: 1772 – 1776.en_US
dc.identifier.citedreferenceLindauer K, Bendic C, Suhnel J. HBexplore ‐ A new tool for identifying and analysing hydrogen bonding patterns in biological macromolecules. Comput Appl Biosci 1996; 12: 281 – 289.en_US
dc.identifier.citedreferenceTiwari A, Panigrahi SK. HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol 2007; 7: 651 – 661.en_US
dc.identifier.citedreferenceTina KG, Bhadra R, Srinivasan N. PIC: protein interactions calculator. Nucleic Acids Res 2007; 35 (Web Server issue): W473 – 476.en_US
dc.identifier.citedreferenceYang S, Salmon L, Al‐Hashimi HM. Measuring similarity between dynamic ensembles of biomolecules. Nat Methods 2014; 11: 552 – 554.en_US
dc.identifier.citedreferenceCapra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007; 23: 1875 – 1882.en_US
dc.identifier.citedreferenceOfran Y, Rost B. Analysing six types of protein‐protein interfaces. J Mol Biol 2003; 325: 377 – 387.en_US
dc.identifier.citedreferenceScheiner S. Relative strengths of NH center dot center dot O and CH center dot center dot O hydrogen bonds between polypeptide chain segments. J Phys Chem B 2005; 109: 16132 – 16141.en_US
dc.identifier.citedreferenceScheiner S, Kar T. Effect of solvent upon CH center dot center dot center dot O hydrogen bonds with implications for protein folding. J Phys Chem B 2005; 109: 3681 – 3689.en_US
dc.identifier.citedreferenceKaranicolas J, Brooks CL, III. The origins of asymmetry in the folding transition states of protein L and protein G. Protein Sci 2002; 11: 2351 – 2361.en_US
dc.identifier.citedreferenceCheung MS, Garcia AE, Onuchic JN. Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc Natl Acad Sci USA 2002; 99: 685 – 690.en_US
dc.identifier.citedreferenceChen T, Chan HS. Effects of desolvation barriers and sidechains on local‐nonlocal coupling and chevron behaviors in coarse‐grained models of protein folding. Phys Chem Chem Phys 2014; 16: 6460 – 6479.en_US
dc.identifier.citedreferenceIsom DG, Castaneda CA, Cannon BR, Velu PD, Garcia‐Moreno EB. Charges in the hydrophobic interior of proteins. Proc Natl Acad Sci USA 2010; 107: 16096 – 16100.en_US
dc.identifier.citedreferenceIsom DG, Cannon BR, Castaneda CA, Robinson A, Garcia‐Moreno B. High tolerance for ionizable residues in the hydrophobic interior of proteins. Proc Natl Acad Sci USA 2008; 105: 17784 – 17788.en_US
dc.identifier.citedreferenceDesiraju GR, Steiner T. The weak hydrogen bond. Oxford: Oxford University Press; 1999.en_US
dc.identifier.citedreferenceHorowitz S, Trievel RC. Carbon‐oxygen hydrogen bonding in biological structure and function. J Biol Chem 2012; 287: 41576 – 41582.en_US
dc.identifier.citedreferenceHorowitz S, Dirk LM, Yesselman JD, Nimtz JS, Adhikari U, Mehl RA, Scheiner S, Houtz RL, Al‐Hashimi HM, Trievel RC. Conservation and functional importance of carbon‐oxygen hydrogen bonding in AdoMet‐dependent methyltransferases. J Am Chem Soc 2013; 135: 15536 – 15548.en_US
dc.identifier.citedreferenceGu YL, Kar T, Scheiner S. Fundamental properties of the CH center dot center dot center dot O interaction: is it a true hydrogen bond? J Am Chem Soc 1999; 121: 9411 – 9422.en_US
dc.identifier.citedreferenceKryachko ES, Zeegers‐Huyskens T. Theoretical study of the CH center dot center dot center dot O interaction in fluoromethanes center dot H2O and chloromethanes center dot H2O complexes. J Phys Chem A 2001; 105: 7118 – 7125.en_US
dc.identifier.citedreferenceSteiner T, Desiraju GR. Distinction between the weak hydrogen bond and the van der Waals interaction. Chem Commun 1998: 891 – 892.en_US
dc.identifier.citedreferenceSteiner T. Influence of C‐H center dot center dot center dot O interactions on the conformation of methyl groups quantified from neutron diffraction data. J Phys Chem A 2000; 104: 433 – 435.en_US
dc.identifier.citedreferencePanigrahi SK, Desiraju GR. Strong and weak hydrogen bonds in the protein‐ligand interface. Proteins 2007; 67: 128 – 141.en_US
dc.identifier.citedreferenceSarkhel S, Desiraju GR. N ‐ H.O, O ‐ H.O, and C ‐ H.O hydrogen bonds in protein‐ligand complexes: strong and weak interactions in molecular recognition. Proteins: Struct Funct Genet 2004; 54: 247 – 259.en_US
dc.identifier.citedreferenceChen JC, Hanson BL, Fisher SZ, Langan P, Kovalevsky AY. Direct observation of hydrogen atom dynamics and interactions by ultrahigh resolution neutron protein crystallography. Proc Natl Acad Sci USA 2012; 109: 15301 – 15306.en_US
dc.identifier.citedreferenceArunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ. Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 2011; 83: 1637 – 1641.en_US
dc.identifier.citedreferenceDerewenda ZS, Lee L, Derewenda U. The occurrence of C‐H‐center‐dot‐center‐dot‐center‐dot‐O hydrogen‐bonds in proteins. J Mol Biol 1995; 252: 248 – 262.en_US
dc.identifier.citedreferenceTaylor R, Kennard O. Crystallographic evidence for the existence of C‐H.O, C‐H.N, and C‐H.C1 hydrogen‐bonds. J Am Chem Soc 1982; 104: 5063 – 5070.en_US
dc.identifier.citedreferenceBalasubramanian R, Chidambaram R, Ramachandran Gn. Potential functions for hydrogen bond interactions II. Formulation of an empirical potential function. Biochim Biophys Acta 1970; 221: 196 – 206.en_US
dc.identifier.citedreferencePierce AC, Sandretto KL, Bemis GW. Kinase inhibitors and the case for CH center dot center dot center dot O hydrogen bonds in protein‐ligand binding. Proteins: Struct Funct Genet 2002; 49: 567 – 576.en_US
dc.identifier.citedreferenceKroon J, Kanters JA. Nonlinearity of Hydrogen‐Bonds in Molecular‐Crystals. Nature 1974; 248 ( 5450 ): 667 – 669.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.