Show simple item record

Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data

dc.contributor.authorLu, Xuewenen_US
dc.contributor.authorSong, Peter X.‐k.en_US
dc.date.accessioned2015-03-05T18:24:42Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationLu, Xuewen; Song, Peter X.‐k. (2015). "Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data." Scandinavian Journal of Statistics 42(1): 306-328.en_US
dc.identifier.issn0303-6898en_US
dc.identifier.issn1467-9469en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110752
dc.description.abstractThis paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likelihood estimation for regression parameters and nuisance parameters and show that the resultant estimator of regression parameter vector is asymptotically normal and achieves the semiparametric information bound. In addition, we show that rates of convergence for the estimators of nonparametric functions are optimal. We implement the proposed estimation through a backfitting algorithm on generalized linear models. We conduct simulation studies to examine the finite‐sample performance of the proposed estimation method and present an analysis of renal function recovery data for illustration.en_US
dc.publisherThe Johns Hopkins University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othersemiparametric information bounden_US
dc.subject.othersieve methoden_US
dc.subject.othersplinesen_US
dc.subject.otherrate of convergenceen_US
dc.subject.otherbackfittingen_US
dc.titleEfficient Estimation of the Partly Linear Additive Hazards Model with Current Status Dataen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelStatistics (Mathematical)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/1/sjos12108.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110752/2/sjos12108-sup-0001-supinfo.pdf
dc.identifier.doi10.1111/sjos.12108en_US
dc.identifier.sourceScandinavian Journal of Statisticsen_US
dc.identifier.citedreferenceRabinowitz, D., Tsiatis, A. & Aragon, J. ( 1995 ). Regression with interval‐censored data. Biometrika 82, 501 – 513.en_US
dc.identifier.citedreferenceKosorok, M. R. ( 2008 ). Introduction to Empirical Processes and Semiparametric Inference, Springer, New York.en_US
dc.identifier.citedreferenceLian, H., Chen, X. & Yang, J. Y. ( 2012 ). Identification of partially linear structure in additive models with an application to gene expression prediction from sequences. Biometrics 68, 437 – 445.en_US
dc.identifier.citedreferenceLin, D. Y., Oakes, D. & Ying, Z. ( 1998 ). Additive hazards regression with current status data. Biometrika 85, 289 – 298.en_US
dc.identifier.citedreferenceLin, D. Y. & Ying, Z. ( 1994 ). Semiparametric analysis of the additive risk model. Biometrika 81, 61 – 71.en_US
dc.identifier.citedreferenceLu, M., Zhang, Y. & Huang, J. ( 2007 ). Estimation of the mean function with panel count data using monotone polynomial splines. Biometrika 94, 705 – 718.en_US
dc.identifier.citedreferenceMa, S. ( 2011 ). Additive risk model for current status data with a cured subgroup. Ann. I. Stat. Math. 63, 117 – 134.en_US
dc.identifier.citedreferenceMa, S. & Kosorok, M. R. ( 2005a ). Penalized log‐likelihood estimation for partly linear transformation models with current status data. Ann. Stat. 33, 2256 – 2290.en_US
dc.identifier.citedreferenceMa, S. & Kosorok, M. R. ( 2005b ). Robust semiparametric m‐estimation and the weighted bootstrap. J. Multivariate Anal. 96, 190 – 217.en_US
dc.identifier.citedreferenceMartinussen, T. & Scheike, T. H. ( 2002 ). Efficient estimation in additive hazards regression with current status data. Biometrika 89, 649 – 658.en_US
dc.identifier.citedreferenceMcKeague, I. W. & Sasieni, P. D. ( 1994 ). A partly parametric additive risk model. Biometrika 81, 501 – 514.en_US
dc.identifier.citedreferenceRobertson, T., Wright, F. T., Dykstra, R. L. & Robertson, T. ( 1988 ). Order Restricted Statistical Inference, Wiley, New York.en_US
dc.identifier.citedreferenceSasieni, P. ( 1992 ). Non‐orthogonal projections and their application to calculating the information in a partly linear Cox. model. Scand. J. Stat. 9, 215 – 233.en_US
dc.identifier.citedreferenceSchumaker, L. ( 1981 ). Spline Functions: Basic Theory, Wiley, New York.en_US
dc.identifier.citedreferenceStone, C. J. ( 1985 ). Additive regression and other nonparametric models. Ann. Stat. 13, 689 – 705.en_US
dc.identifier.citedreferenceThisted, R. A. ( 1988 ). Elements of Statistical Computing: Numerical Computation, Chapman & Hall/CRC, New York.en_US
dc.identifier.citedreferenceVan der Vaart, A. & Wellner, J. A. ( 1996 ). Weak Convergence and Empirical Processes: with Applications to Statistics, Springer, New York.en_US
dc.identifier.citedreferenceXue, H., Lam, K. F. & Li, G. ( 2004 ). Sieve maximum likelihood estimator for semiparametric regression models with current status data. J. Am. Stat. Assoc. 99, 346 – 356.en_US
dc.identifier.citedreferenceZeng, D., Cai, J. & Shen, Y. ( 2006 ). Semiparametric additive risks model for interval‐censored data. Stat. Sinica 16, 287 – 302.en_US
dc.identifier.citedreferenceZhang, H. H., Cheng, G. & Liu, Y. ( 2011 ). Linear or nonlinear? automatic structure discovery for partially linear models. J. Am. Stat. Assoc. 106, 1099 – 1109.en_US
dc.identifier.citedreferenceZucker, D. M. & Karr, A. F. ( 1990 ). Nonparametric survival analysis with time‐dependent covariate effects: a penalized partial likelihood approach. Ann. Stat. 18, 329 – 353.en_US
dc.identifier.citedreferenceSchwarz, G. ( 1978 ). Estimating the dimension of a model. Ann. Stat. 6, 461 – 464.en_US
dc.identifier.citedreferenceShiboski, S. C. ( 1998 ). Generalized additive models for current status data. Lifetime Data Anal. 4, 29 – 50.en_US
dc.identifier.citedreferenceShiboski, S. C. & Jewell, N. P. ( 1992 ). Statistical analysis of the time dependence of HIV infectivity based on partner study data. J. Am. Stat. Assoc. 87, 360 – 372.en_US
dc.identifier.citedreferenceStone, C. J. ( 1982 ). Optimal global rates of convergence for nonparametric regression. Ann. Stat. 10, 1040 – 1053.en_US
dc.identifier.citedreferenceBickel, P. J., Klaassen, C. A., Ritov, Y. & Wellner, J. A. ( 1993 ). Efficient and Adaptive Estimation for Semiparametric Models, The Johns Hopkins University Press, Baltimore.en_US
dc.identifier.citedreferenceClaeskens, G., Krivobokova, T. & Opsomer, J. D. ( 2009 ). Asymptotic properties of penalized spline estimators. Biometrika 96, 529 – 544.en_US
dc.identifier.citedreferenceCox, D. R. ( 1972 ). Regression models and life‐tables. J. Roy. Stat. Soc. B Met. 34, 187 – 220.en_US
dc.identifier.citedreferenceGray, R. J. ( 1992 ). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. J. Am. Stat. Assoc. 87, 942 – 951.en_US
dc.identifier.citedreferenceGroeneboom, P. & Wellner, J. A. ( 1992 ). Information Bounds and Nonparametric Maximum Likelihood Estimation, Verlag Basel, Birkhäuser.en_US
dc.identifier.citedreferenceHastie, T., Tibshirani, R. & Friedman, J. ( 2008 ). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, (2nd edn)., Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceHe, X., Zhu, Z. Y. & Fung, W. K. ( 2002 ). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika 89, 579 – 590.en_US
dc.identifier.citedreferenceHeung, M., Wolfgram, D. F., Kommareddi, M., Hu, Y., Song, P. X. & Ojo, A. O. ( 2012 ). Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol. Dial. Transpl. 27, 956 – 961.en_US
dc.identifier.citedreferenceHuang, J. ( 1996 ). Efficient estimation for the proportional hazards model with interval censoring. Ann. Stat. 24, 540 – 568.en_US
dc.identifier.citedreferenceHuang, J. ( 1999 ). Efficient estimation of the partly linear additive Cox. model. Ann. Stat. 27, 1536 – 1563.en_US
dc.identifier.citedreferenceHuang, J. & Rossini, A. J. ( 1997 ). Sieve estimation for the proportional‐odds failure‐time regression model with interval censoring. J. Am. Stat. Assoc. 92, 960 – 967.en_US
dc.identifier.citedreferenceKalbfleisch, J. D. & Prentice, R. L. ( 2002 ). The Statistical Analysis of Failure Time Data, (2nd edn)., John Wiley & Sons, Inc., New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.