Show simple item record

Reduced executive and default network functional connectivity in cigarette smokers

dc.contributor.authorWeiland, Barbara J.en_US
dc.contributor.authorSabbineni, Amithrupaen_US
dc.contributor.authorCalhoun, Vince D.en_US
dc.contributor.authorWelsh, Robert C.en_US
dc.contributor.authorHutchison, Kent E.en_US
dc.date.accessioned2015-03-05T18:24:43Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationWeiland, Barbara J.; Sabbineni, Amithrupa; Calhoun, Vince D.; Welsh, Robert C.; Hutchison, Kent E. (2015). "Reduced executive and default network functional connectivity in cigarette smokers." Human Brain Mapping 36(3): 872-882.en_US
dc.identifier.issn1065-9471en_US
dc.identifier.issn1097-0193en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110754
dc.description.abstractAltered functional connectivity has been associated with acute and chronic nicotine use. Connectivity alterations, specifically in the right and left executive control networks (RECN/LECN) and the default mode network (DMN), may contribute to the addiction cycle. The objective of this study was to determine if executive control network (ECN) and DMN connectivity is different between non‐smokers and smokers and whether reductions in connectivity are related to chronic cigarette use. The RECN, LECN, and DMN were identified in resting state functional magnetic resonance imaging data in 650 subjects. Analyses tested for group differences in network connectivity strength, controlling for age and alcohol use. There was a significant group effect on LECN and DMN connectivity strength with smokers (n = 452) having lower network strengths than non‐smokers (n = 198). Smokers had lower connectivity than non‐smokers associated with key network hubs: the dorsolateral prefrontal cortex, and parietal nodes within ECNs. Further, ECN connectivity strength was negatively associated with pack years of cigarette use. Our data suggest that chronic nicotine use negatively impacts functional connectivity within control networks that may contribute to the difficulty smokers have in quitting. Hum Brain Mapp 36:872–882, 2015. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherAmerican Physiological Societyen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherresting stateen_US
dc.subject.othersmokingen_US
dc.subject.otherfunctional connectivityen_US
dc.subject.otherexecutive control networken_US
dc.subject.othercigaretteen_US
dc.subject.otherdefault mode networken_US
dc.subject.othernicotineen_US
dc.titleReduced executive and default network functional connectivity in cigarette smokersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbsecondlevelKinesiology and Sportsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110754/1/hbm22672.pdf
dc.identifier.doi10.1002/hbm.22672en_US
dc.identifier.sourceHuman Brain Mappingen_US
dc.identifier.citedreferenceSaunders JB, Aasland OG, Babor TF, De La Fuente JR, Grant, M ( 1993 ): Development of the Alcohol Use Disorders Identification Test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption‐II. Addiction 88: 791 – 804.en_US
dc.identifier.citedreferenceLuijten M, O'Connor DA, Rossiter S, Franken IHA, Hester R ( 2013 ): Effects of reward and punishment on brain activations associated with inhibitory control in cigarette smokers. Addiction 108: 1969 – 1978.en_US
dc.identifier.citedreferenceLynall M‐E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E ( 2010 ): Functional connectivity and brain networks in schizophrenia. J Neurosci 30: 9477 – 9487.en_US
dc.identifier.citedreferenceMamede M, Ishizu K, Ueda M, Mukai T, Iida Y, Fukuyama H, Saga T, Saji H ( 2004 ) Quantification of human nicotinic acetylcholine receptors with 123I‐5IA SPECT. J Nucl Med 45: 1458 – 1470.en_US
dc.identifier.citedreferenceMcFarland K, Kalivas PW ( 2001 ) The circuitry mediating cocaine‐induced reinstatement of drug‐seeking behavior. J Neurosci 21: 8655 – 8663.en_US
dc.identifier.citedreferenceNational Cancer Institute ( 2013 ): PDQ® Cigarette Smoking. Bethesda, MD.en_US
dc.identifier.citedreferenceNational Institute on Drug Abuse ( 2012 ): NIDA Research Report Series: Tobacco Addiction. Bethesda, Maryland. NIH Publication Number 12–4342. National Institute on Drug Abuse.en_US
dc.identifier.citedreferenceNordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Langstrom B ( 1989 ): Uptake and regional distribution of (+)‐(R)‐ and (‐)‐(S)‐N‐[methyl‐11C]‐nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm Park Dis Dement Sect 1: 195 – 205.en_US
dc.identifier.citedreferencePark S, Knopick C, McGurk S, Meltzer HY ( 2000 ): Nicotine impairs spatial working memory while leaving spatial attention intact. Neuropsychopharmacology 22: 200 – 209.en_US
dc.identifier.citedreferenceParrott A, Granham N, Wesnes K, Pinnock C ( 1996 ): Cigarette smoking and abstinence: Comparative effects upon cognitive task performance and mood state over 24 hours. Hum Psychopharmacol 11: 391 – 400.en_US
dc.identifier.citedreferenceReitz C, Luchsinger J, Tang M‐X, Mayeux R ( 2005 ): Effect of smoking and time on cognitive function in the elderly without dementia. Neurology 65: 870 – 875.en_US
dc.identifier.citedreferenceScott A, Courtney W, Wood D, de la Garza R, Lane S, King M, Wang R, Roberts J, Turner JA, Calhoun VD ( 2011 ): COINS: An innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinform 5: 33.en_US
dc.identifier.citedreferenceSeeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007 ): Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349 – 2356.en_US
dc.identifier.citedreferenceShirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD ( 2012 ): Decoding subject‐driven cognitive states with whole‐brain connectivity patterns. Cereb Cortex 22: 158 – 165.en_US
dc.identifier.citedreferenceSmith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009 ): Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci 106: 13040 – 13045.en_US
dc.identifier.citedreferenceSobell LC, Maisto SA, Sobell MB, Cooper AM ( 1979 ): Reliability of alcohol abusers' self‐reports of drinking behavior. Behav Res Ther 17: 157 – 160.en_US
dc.identifier.citedreferenceStarr JM, Deary IJ, Fox HC, Whalley LJ ( 2007 ): Smoking and cognitive change from age 11 to 66 years: A confirmatory investigation. Addict Behav 32: 63 – 68.en_US
dc.identifier.citedreferenceSutherland MT, McHugh MJ, Pariyadath V, Stein EA ( 2012 ): Resting state functional connectivity in addiction: Lessons learned and a road ahead. NeuroImage 62: 2281 – 2295.en_US
dc.identifier.citedreferenceSutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Hong LE, Stein EA ( 2013 ): Down‐regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biol Psychiatry 74: 538 – 546.en_US
dc.identifier.citedreferenceSwan GE, Lessov‐Schlaggar CN ( 2007 ): The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 17: 259 – 273.en_US
dc.identifier.citedreferenceTanabe J, Nyberg E, Martin L, Martin J, Cordes D, Kronberg E, Tregellas J ( 2011 ): Nicotine effects on default mode network during resting state. Psychopharmacology 216: 287 – 295.en_US
dc.identifier.citedreferenceVan Dijk KRA, Sabuncu MR, Buckner RL ( 2012 ): The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59: 431 – 438.en_US
dc.identifier.citedreferenceVolkow ND, Wang G‐J, Fowler JS, Tomasi D, Telang F ( 2011 ): Addiction: Beyond dopamine reward circuitry. Proc Natl Acad Sci USA 108: 15037 – 15042.en_US
dc.identifier.citedreferenceWeiland BJ, Sabbineni A, Calhoun VD, Welsh RC, Bryan AD, Jung RE, Mayer AR, Hutchison KE ( 2014 ): Reduced left executive control network functional connectivity is associated with alcohol use disorders. Alcohol Clin Exp Res 38: 2445 – 2453.en_US
dc.identifier.citedreferenceWelsh RC, Chen AC, Taylor SF ( 2010 ): Low‐frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 36: 713 – 722.en_US
dc.identifier.citedreferenceWig GS, Schlaggar BL, Petersen SE ( 2011 ): Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224: 126 – 146.en_US
dc.identifier.citedreferenceXu J, Mendrek A, Cohen MS, Monterosso J, Rodriguez P, Simon SL, Brody A, Jarvik M, Domier CP, Olmstead R, Ernst M, London ED ( 2005 ): Brain activity in cigarette smokers performing a working memory task: Effect of smoking abstinence. Biol Psychiatry 58: 143 – 150.en_US
dc.identifier.citedreferenceZhang X, Salmeron BJ, Ross TJ, Gu H, Geng X, Yang Y, Stein EA ( 2011 ): Anatomical differences and network characteristics underlying smoking cue reactivity. NeuroImage 54: 131 – 141.en_US
dc.identifier.citedreferenceAndersen SL, Teicher MH ( 2008 ): Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 31: 183 – 191.en_US
dc.identifier.citedreferenceBeckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005 ): Investigations into resting‐state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001 – 1013.en_US
dc.identifier.citedreferenceBenjamini Y, Hochberg Y ( 1995 ): Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57: 289 – 300.en_US
dc.identifier.citedreferenceBonson KR, Grant SJ, Contoreggi CS, Links JM, Metcalfe J, Weyl HL, Kurian V, Ernst M, London ED ( 2002 ): Neural systems and cue‐induced cocaine craving. Neuropsychopharmacology 26: 376 – 386.en_US
dc.identifier.citedreferenceBrody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, Bota RG, Bartzokis G, London ED ( 2004 ): Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry 55: 77 – 84.en_US
dc.identifier.citedreferenceBuckner RL, Andrews‐Hanna JR, Schacter DL ( 2008 ): The brain's default network. Ann N Y Acad Sci 1124: 1 – 38.en_US
dc.identifier.citedreferenceBuckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews‐Hanna JR, Sperling RA, Johnson KA ( 2009 ): Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. The J Neurosci 29: 1860 – 1873.en_US
dc.identifier.citedreferenceBullmore E, Sporns O ( 2009 ): Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10: 186 – 198.en_US
dc.identifier.citedreferenceChakravarthy VS, Joseph D, Bapi R ( 2010 ): What do the basal ganglia do? A modeling perspective. Biol Cybern 103: 237 – 253.en_US
dc.identifier.citedreferenceChristodoulou AG, Bauer TE, Kiehl KA, Feldstein Ewing SW, Bryan AD, Calhoun VD ( 2013 ): A quality control method for detecting and suppressing uncorrected residual motion in fMRI studies. Magn Reson Imaging 31: 707 – 717.en_US
dc.identifier.citedreferenceClaus ED, Ewing SWF, Filbey FM, Sabbineni A, Hutchison KE ( 2011 ): Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology 36: 2086 – 2096.en_US
dc.identifier.citedreferenceCole DM, Beckmann CF, Long CJ, Matthews PM, Durcan MJ, Beaver JD ( 2010 ): Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. NeuroImage 52: 590 – 599.en_US
dc.identifier.citedreferenceCole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS ( 2013 ): Multi‐task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16: 1348 – 1355.en_US
dc.identifier.citedreferenceDamoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006): Consistent resting‐state networks across healthy subjects. Proc Natl Acad Sci USA 103: 13848 – 13853.en_US
dc.identifier.citedreferenceFair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2007 ): Development of distinct control networks through segregation and integration. Proc Natl Acad Sci 104: 13507 – 13512.en_US
dc.identifier.citedreferenceGallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M ( 2006 ): Smoking and structural brain deficits: A volumetric MR investigation. Eur J Neurosci 24: 1744 – 1750.en_US
dc.identifier.citedreferenceGoldman‐Rakic PS ( 1987 ): Circuitry of primate prefrontal cortex and regulation of behavior by representational knowledge. In: Plum F, Mountcasle V, editors. Handbook of Physiology—The Nervous System. Bethesda, MD: American Physiological Society. pp 373 – 417.en_US
dc.identifier.citedreferenceGoldstein RZ, Volkow ND ( 2002 ): Drug addiction and its underlying neurobiological basis: Neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159: 1642 – 1652.en_US
dc.identifier.citedreferenceGoldstein RZ, Volkow ND ( 2011 ): Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nat Rev Neurosci 12: 652 – 669.en_US
dc.identifier.citedreferenceGreicius MD, Krasnow B, Reiss AL, Menon V ( 2003 ): Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253 – 258.en_US
dc.identifier.citedreferenceGusnard DA, Akbudak E, Shulman GL, Raichle ME ( 2001 ): Medial prefrontal cortex and self‐referential mental activity: Relation to a default mode of brain function. Proc Natl Acad Sci 98: 4259 – 4264.en_US
dc.identifier.citedreferenceHampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006 ): Brain connectivity related to working memory performance. J Neurosci 26: 13338 – 13343.en_US
dc.identifier.citedreferenceHong LE, Gu H, Yang Y, Ross TJ, Salmeron BJ, Buchholz B, Thaker GK, Stein EA ( 2009 ): Association of nicotine addiction and nicotine's actions with separate cingulate cortex functional circuits. Arch Gen Psychiatry 66: 431 – 441.en_US
dc.identifier.citedreferenceHughes JR ( 2007 ): Effects of abstinence from tobacco: Valid symptoms and time course. Nicotine Tob Res 9: 315 – 327.en_US
dc.identifier.citedreferenceHyman SE, Malenka RC, Nestler EJ ( 2006 ): Neural mechanisms of addiction: The role of reward‐related learning and memory. Annu Rev Neurosci 29: 565 – 598.en_US
dc.identifier.citedreferenceJacobsen L, Pugh K, Mencl WE, Gelernter J ( 2006 ): C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology 188: 530 – 540.en_US
dc.identifier.citedreferenceJanes AC, Nickerson LD, Frederick BD, Kaufman MJ ( 2012 ) Prefrontal and limbic resting state brain network functional connectivity differs between nicotine‐dependent smokers and non‐smoking controls. Drug Alcohol Depend 125: 252 – 259.en_US
dc.identifier.citedreferenceJasinska AJ, Zorick T, Brody AL, Stein EA ( 2014 ): Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans. Neuropharmacology 83: 111 – 122.en_US
dc.identifier.citedreferenceKalman D, Morissette SB, George TP ( 2005 ): Co‐morbidity of smoking in patients with psychiatric and substance use disorders. Am J Addict 14: 106 – 123.en_US
dc.identifier.citedreferenceKiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang Y‐F, Tervonen O ( 2009 ): Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapp 30: 3865 – 3886.en_US
dc.identifier.citedreferenceKoob GF ( 2006 ): The neurobiology of addiction: A neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1): 23 – 30.en_US
dc.identifier.citedreferenceLaird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT ( 2011 ): Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23: 4022 – 4037.en_US
dc.identifier.citedreferenceLerman C, Gu H, Loughead J, Ruparel K, Yang Y, Stein EA ( 2014 ): Large‐scale brain network coupling predicts acute nicotine abstinence effects on craving and cognitive function. JAMA Psychiatry 71: 523 – 530.en_US
dc.identifier.citedreferenceLoughead J, Ray R, Wileyto EP, Ruparel K, Sanborn P, Siegel S, Gur RC, Lerman C ( 2010 ): Effects of the alpha4beta2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol Psychiatry 67: 715 – 721.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.