Show simple item record

Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease

dc.contributor.authorJoshi, Gunjanen_US
dc.contributor.authorWang, Yanzhuangen_US
dc.date.accessioned2015-03-05T18:24:47Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03en_US
dc.identifier.citationJoshi, Gunjan; Wang, Yanzhuang (2015). "Golgi defects enhance APP amyloidogenic processing in Alzheimer's disease." BioEssays 37(3): 240-247.en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110763
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAlzheimer's diseaseen_US
dc.subject.otherGolgi defectsen_US
dc.subject.otherGRASP55en_US
dc.subject.otherGRASP65en_US
dc.subject.otherneuronal functionen_US
dc.subject.otheramyloid precursor proteinen_US
dc.subject.otheramyloid betaen_US
dc.titleGolgi defects enhance APP amyloidogenic processing in Alzheimer's diseaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110763/1/bies201400116.pdf
dc.identifier.doi10.1002/bies.201400116en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceShiba T, Takatsu H, Nogi T, Matsugaki N, et al. 2002. Structural basis for recognition of acidic‐cluster dileucine sequence by GGA1. Nature 415: 937 – 41.en_US
dc.identifier.citedreferenceBonifacino JS. 2004. The GGA proteins: adaptors on the move. Nat Rev Mol Cell Biol 5: 23 – 32.en_US
dc.identifier.citedreferenceTesco G, Koh YH, Kang EL, Cameron AN, et al. 2007. Depletion of GGA3 stabilizes BACE and enhances beta‐secretase activity. Neuron 54: 721 – 37.en_US
dc.identifier.citedreferenceWahle T, Prager K, Raffler N, Haass C, et al. 2005. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans‐Golgi network. Mol Cell Neurosci 29: 453 – 61.en_US
dc.identifier.citedreferenceWahle T, Thal DR, Sastre M, Rentmeister A, et al. 2006. GGA1 is expressed in the human brain and affects the generation of amyloid beta‐peptide. J Neurosci 26: 12838 – 46.en_US
dc.identifier.citedreferenceKang EL, Cameron AN, Piazza F, Walker KR, et al. 2010. Ubiquitin regulates GGA3‐mediated degradation of BACE1. J Biol Chem 285: 24108 – 19.en_US
dc.identifier.citedreferencevon Arnim CA, Spoelgen R, Peltan ID, Deng M, et al. 2006. GGA1 acts as a spatial switch altering amyloid precursor protein trafficking and processing. J Neurosci 26: 9913 – 22.en_US
dc.identifier.citedreferenceTakasugi N, Tomita T, Hayashi I, Tsuruoka M, et al. 2003. The role of presenilin cofactors in the gamma‐secretase complex. Nature 422: 438 – 41.en_US
dc.identifier.citedreferenceCulvenor JG, Maher F, Evin G, Malchiodi‐Albedi F, et al. 1997. Alzheimer's disease‐associated presenilin 1 in neuronal cells: evidence for localization to the endoplasmic reticulum‐Golgi intermediate compartment. J Neurosci Res 49: 719 – 31.en_US
dc.identifier.citedreferenceGreenfield JP, Tsai J, Gouras GK, Hai B, et al. 1999. Endoplasmic reticulum and trans‐Golgi network generate distinct populations of Alzheimer beta‐amyloid peptides. Proc Natl Acad Sci USA 96: 742 – 7.en_US
dc.identifier.citedreferenceLiu Y, Zhang YW, Wang X, Zhang H, et al. 2009. Intracellular trafficking of presenilin 1 is regulated by beta ‐amyloid precursor protein and phospholipase D1. J Biol Chem 284: 12145 – 52.en_US
dc.identifier.citedreferenceMarty N, Dallaporta M, Thorens B. 2007. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22: 241 – 51.en_US
dc.identifier.citedreferenceBady I, Marty N, Dallaporta M, Emery M, et al. 2006. Evidence from glut2‐null mice that glucose is a critical physiological regulator of feeding. Diabetes 55: 988 – 95.en_US
dc.identifier.citedreferenceMounien L, Marty N, Tarussio D, Metref S, et al. 2010. Glut2‐dependent glucose‐sensing controls thermoregulation by enhancing the leptin sensitivity of NPY and POMC neurons. FASEB J 24: 1747 – 58.en_US
dc.identifier.citedreferenceThorens B, Gerard N, Deriaz N. 1993. GLUT2 surface expression and intracellular transport via the constitutive pathway in pancreatic beta cells and insulinoma: evidence for a block in trans‐Golgi network exit by brefeldin A. J Cell Biol 123: 1687 – 94.en_US
dc.identifier.citedreferenceMishra B, von der Ohe M, Schulze C, Bian S, et al. 2010. Functional role of the interaction between polysialic acid and extracellular histone H1. J Neurosci 30: 12400 – 13.en_US
dc.identifier.citedreferenceBlaumueller CM, Qi H, Zagouras P, Artavanis‐Tsakonas S. 1997. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90: 281 – 91.en_US
dc.identifier.citedreferenceLogeat F, Bessia C, Brou C, LeBail O, et al. 1998. The Notch1 receptor is cleaved constitutively by a furin‐like convertase. Proc Natl Acad Sci USA 95: 8108 – 12.en_US
dc.identifier.citedreferenceLake RJ, Grimm LM, Veraksa A, Banos A, et al. 2009. In vivo analysis of the Notch receptor S1 cleavage. PLoS One 4: e6728.en_US
dc.identifier.citedreferenceTien AC, Rajan A, Bellen HJ. 2009. A Notch updated. J Cell Biol 184: 621 – 9.en_US
dc.identifier.citedreferenceTakeuchi H, Haltiwanger RS. 2010. Role of glycosylation of Notch in development. Semin Cell Dev Biol 21: 638 – 45.en_US
dc.identifier.citedreferenceZhou Y, Atkins JB, Rompani SB, Bancescu DL, et al. 2007. The mammalian Golgi regulates numb signaling in asymmetric cell division by releasing ACBD3 during mitosis. Cell 129: 163 – 78.en_US
dc.identifier.citedreferencevan Tetering G, Vooijs M. 2011. Proteolytic cleavage of Notch: “HIT and RUN ”. Curr Mol Med 11: 255 – 69.en_US
dc.identifier.citedreferenceWolfe MS. 2008. Inhibition and modulation of gamma‐secretase for Alzheimer's disease. Neurotherapeutics 5: 391 – 8.en_US
dc.identifier.citedreferenceBexiga MG, Simpson JC. 2013. Human diseases associated with form and function of the Golgi complex. Int J Mol Sci 14: 18670 – 81.en_US
dc.identifier.citedreferenceDupuis N, Lebon S, Kumar M, Drunat S, et al. 2013. A novel RAB33B mutation in Smith‐McCort dysplasia. Hum Mutat 34: 283 – 6.en_US
dc.identifier.citedreferenceBasel‐Vanagaite L, Sarig O, Hershkovitz D, Fuchs‐Telem D, et al. 2009. RIN2 deficiency results in macrocephaly, alopecia, cutis laxa, and scoliosis: MACS syndrome. Am J Hum Genet 85: 254 – 63.en_US
dc.identifier.citedreferenceSyx D, Malfait F, Van Laer L, Hellemans J, et al. 2010. The RIN2 syndrome: a new autosomal recessive connective tissue disorder caused by deficiency of Ras and Rab interactor 2 (RIN2). Hum Genet 128: 79 – 88.en_US
dc.identifier.citedreferenceStieber A, Mourelatos Z, Gonatas NK. 1996. In Alzheimer's disease the Golgi apparatus of a population of neurons without neurofibrillary tangles is fragmented and atrophic. Am J Pathol 148: 415 – 26.en_US
dc.identifier.citedreferenceHuse JT, Liu K, Pijak DS, Carlin D, et al. 2002. Beta‐secretase processing in the trans‐Golgi network preferentially generates truncated amyloid species that accumulate in Alzheimer's disease brain. J Biol Chem 277: 16278 – 84.en_US
dc.identifier.citedreferenceMizuno Y, Hattori N, Kitada T, Matsumine H, et al. 2001. Familial Parkinson's disease. Alpha‐synuclein and parkin. Adv Neurol 86: 13 – 21.en_US
dc.identifier.citedreferenceHilditch‐Maguire P, Trettel F, Passani LA, Auerbach A, et al. 2000. Huntingtin: an iron‐regulated protein essential for normal nuclear and perinuclear organelles. Hum Mol Genet 9: 2789 – 97.en_US
dc.identifier.citedreferenceFujita Y, Okamoto K. 2005. Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology 25: 388 – 94.en_US
dc.identifier.citedreferenceGonatas NK, Gonatas JO, Stieber A. 1998. The involvement of the Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis, Alzheimer's disease, and ricin intoxication. Histochem Cell Biol 109: 591 – 600.en_US
dc.identifier.citedreferenceMourelatos Z, Gonatas NK, Stieber A, Gurney ME, et al. 1996. The Golgi apparatus of spinal cord motor neurons in transgenic mice expressing mutant Cu,Zn superoxide dismutase becomes fragmented in early, preclinical stages of the disease. Proc Natl Acad Sci USA 93: 5472 – 7.en_US
dc.identifier.citedreferenceInoue K. 2005. PLP1‐related inherited dysmyelinating disorders: Pelizaeus‐Merzbacher disease and spastic paraplegia type 2. Neurogenetics 6: 1 – 16.en_US
dc.identifier.citedreferenceTing CH, Wen HL, Liu HC, Hsieh‐Li HM, et al. 2012. The spinal muscular atrophy disease protein SMN is linked to the Golgi network. PLoS One 7: e51826.en_US
dc.identifier.citedreferenceZhang C, Li D, Zhang J, Chen X, et al. 2013. Mutations in ABCB6 cause dyschromatosis universalis hereditaria. J Invest Dermatol 133: 2221 – 8.en_US
dc.identifier.citedreferenceCondon KH, Ho J, Robinson CG, Hanus C, et al. 2013. The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation. J Neurosci 33: 3799 – 814.en_US
dc.identifier.citedreferenceKornak U, Reynders E, Dimopoulou A, van Reeuwijk J, et al. 2008. Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+‐ATPase subunit ATP6V0A2. Nat Genet 40: 32 – 4.en_US
dc.identifier.citedreferenceFischer B, Dimopoulou A, Egerer J, Gardeitchik T, et al. 2012. Further characterization of ATP6V0A2‐related autosomal recessive cutis laxa. Hum Genet 131: 1761 – 73.en_US
dc.identifier.citedreferenceHennies HC, Kornak U, Zhang H, Egerer J, et al. 2008. Gerodermia osteodysplastica is caused by mutations in SCYL1BP1, a Rab‐6 interacting golgin. Nat Genet 40: 1410 – 2.en_US
dc.identifier.citedreferenceAl‐Dosari M, Alkuraya FS. 2009. A novel missense mutation in SCYL1BP1 produces geroderma osteodysplastica phenotype indistinguishable from that caused by nullimorphic mutations. Am J Med Genet A 149A: 2093 – 8.en_US
dc.identifier.citedreferenceCorbett MA, Schwake M, Bahlo M, Dibbens LM, et al. 2011. A mutation in the Golgi Qb‐SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet 88: 657 – 63.en_US
dc.identifier.citedreferencePercival JM, Froehner SC. 2007. Golgi complex organization in skeletal muscle: a role for Golgi‐mediated glycosylation in muscular dystrophies ? Traffic 8: 184 – 94.en_US
dc.identifier.citedreferenceAlshammari MJ, Al‐Otaibi L, Alkuraya FS. 2012. Mutation in RAB33B, which encodes a regulator of retrograde Golgi transport, defines a second Dyggve–Melchior–Clausen locus. J Med Genet 49: 455 – 61.en_US
dc.identifier.citedreferenceJoshi G, Chi Y, Huang Z, Wang Y. 2014. Abeta‐induced Golgi fragmentation in Alzheimer's disease enhances Abeta production. Proc Natl Acad Sci USA 111: E1230 – 9.en_US
dc.identifier.citedreferenceTang D, Wang Y. 2013. Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 23: 296 – 304.en_US
dc.identifier.citedreferenceTang D, Xiang Y, Wang Y. 2010. Reconstitution of the cell cycle‐regulated Golgi disassembly and reassembly in a cell‐free system. Nat Protoc 5: 758 – 72.en_US
dc.identifier.citedreferenceWang Y, Seemann J, Pypaert M, Shorter J, et al. 2003. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J 22: 3279 – 90.en_US
dc.identifier.citedreferenceWang Y, Satoh A, Warren G. 2005. Mapping the functional domains of the Golgi stacking factor GRASP65. J Biol Chem 280: 4921 – 8.en_US
dc.identifier.citedreferenceTang D, Yuan H, Wang Y. 2010. The role of GRASP65 in Golgi cisternal stacking and cell cycle progression. Traffic 11: 827 – 42.en_US
dc.identifier.citedreferencePuthenveedu MA, Bachert C, Puri S, Lanni F, et al. 2006. GM130 and GRASP65‐dependent lateral cisternal fusion allows uniform Golgi‐enzyme distribution. Nat Cell Biol 8: 238 – 48.en_US
dc.identifier.citedreferenceRebelo S, Vieira SI, Esselmann H, Wiltfang J, et al. 2007. Tyr687 dependent APP endocytosis and Abeta production. J Mol Neurosci 32: 1 – 8.en_US
dc.identifier.citedreferenceJankowsky JL, Fadale DJ, Anderson J, Xu GM, et al. 2004. Mutant presenilins specifically elevate the levels of the 42 residue beta‐amyloid peptide in vivo: evidence for augmentation of a 42‐specific gamma secretase. Hum Mol Genet 13: 159 – 70.en_US
dc.identifier.citedreferenceXiang Y, Wang Y. 2011. New components of the Golgi matrix. Cell Tissue Res 344: 365 – 79.en_US
dc.identifier.citedreferenceWang Y, Seemann J. 2011. Golgi biogenesis. Cold Spring Harb Perspect Biol 3: a005330.en_US
dc.identifier.citedreferenceTang D, Yuan H, Vielemeyer O, Perez F, et al. 2012. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly. Biol Open 1: 1204 – 14.en_US
dc.identifier.citedreferenceLane JD, Lucocq J, Pryde J, Barr FA, et al. 2002. Caspase‐mediated cleavage of the stacking protein GRASP65 is required for Golgi fragmentation during apoptosis. J Cell Biol 156: 495 – 509.en_US
dc.identifier.citedreferenceLee TH, Linstedt AD. 2000. Potential role for protein kinases in regulation of bidirectional endoplasmic reticulum‐to‐Golgi transport revealed by protein kinase inhibitor H89. Mol Biol Cell 11: 2577 – 90.en_US
dc.identifier.citedreferenceSun KH, de Pablo Y, Vincent F, Johnson EO, et al. 2008. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol Biol Cell 19: 3052 – 69.en_US
dc.identifier.citedreferenceThinakaran G, Teplow DB, Siman R, Greenberg B, et al. 1996. Metabolism of the “Swedish” amyloid precursor protein variant in neuro2a (N2a) cells. Evidence that cleavage at the “beta‐secretase” site occurs in the golgi apparatus. J Biol Chem 271: 9390 – 7.en_US
dc.identifier.citedreferenceDries DR, Yu G. 2008. Assembly, maturation, and trafficking of the gamma‐secretase complex in Alzheimer's disease. Curr Alzheimer Res 5: 132 – 46.en_US
dc.identifier.citedreferenceLupashin V, Sztul E. 2005. Golgi tethering factors. Biochim Biophys Acta 1744: 325 – 39.en_US
dc.identifier.citedreferenceKornfeld R, Kornfeld S. 1985. Assembly of asparagine‐linked oligosaccharides. Ann Rev Biochem 54: 631 – 64.en_US
dc.identifier.citedreferenceRoth J. 2002. Protein N‐glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 102: 285 – 303.en_US
dc.identifier.citedreferenceVarki A. 1998. Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell Biol 8: 34 – 40.en_US
dc.identifier.citedreferenceOhtsubo K, Marth JD. 2006. Glycosylation in cellular mechanisms of health and disease. Cell 126: 855 – 67.en_US
dc.identifier.citedreferenceWang Y, Wei JH, Bisel B, Tang D, et al. 2008. Golgi cisternal unstacking stimulates COPI vesicle budding and protein transport. PLoS One 3: e1647.en_US
dc.identifier.citedreferenceXiang Y, Zhang X, Nix D, Katoh T, et al. 2013. Regulation of cargo sorting and glycosylation by the Golgi matrix proteins GRASP55/65. Nat Commun 4: 1659.en_US
dc.identifier.citedreferenceXiang Y, Wang Y. 2010. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188: 237 – 51.en_US
dc.identifier.citedreferenceSonnichsen B, Lowe M, Levine T, Jamsa E, et al. 1998. A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140: 1013 – 21.en_US
dc.identifier.citedreferenceChia PZ, Gleeson PA. 2011. Intracellular trafficking of the beta‐secretase and processing of amyloid precursor protein. IUBMB Life 63: 721 – 9.en_US
dc.identifier.citedreferenceHaass C, Kaether C, Thinakaran G, Sisodia S. 2012. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2: a006270.en_US
dc.identifier.citedreferenceLai A, Sisodia SS, Trowbridge IS. 1995. Characterization of sorting signals in the beta‐amyloid precursor protein cytoplasmic domain. J Biol Chem 270: 3565 – 73.en_US
dc.identifier.citedreferenceMarquez‐Sterling NR, Lo AC, Sisodia SS, Koo EH. 1997. Trafficking of cell‐surface beta‐amyloid precursor protein: evidence that a sorting intermediate participates in synaptic vesicle recycling. J Neurosci 17: 140 – 51.en_US
dc.identifier.citedreferenceHaass C, Koo EH, Mellon A, Hung AY, et al. 1992. Targeting of cell‐surface beta‐amyloid precursor protein to lysosomes: alternative processing into amyloid‐bearing fragments. Nature 357: 500 – 3.en_US
dc.identifier.citedreferenceShoji M, Hirai S, Yamaguchi H, Harigaya Y, et al. 1990. Amyloid beta‐protein precursor accumulates in dystrophic neurites of senile plaques in Alzheimer‐type dementia. Brain Res 512: 164 – 8.en_US
dc.identifier.citedreferenceStokin GB, Lillo C, Falzone TL, Brusch RG, et al. 2005. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282 – 8.en_US
dc.identifier.citedreferenceAraki Y, Tomita S, Yamaguchi H, Miyagi N, et al. 2003. Novel cadherin‐related membrane proteins, Alcadeins, enhance the X11‐like protein‐mediated stabilization of amyloid beta‐protein precursor metabolism. J Biol Chem 278: 49448 – 58.en_US
dc.identifier.citedreferenceRoh JH, Huang Y, Bero AW, Kasten T, et al. 2012. Disruption of the sleep‐wake cycle and diurnal fluctuation of beta‐amyloid in mice with Alzheimer's disease pathology. Sci Transl Med 4: 150ra22.en_US
dc.identifier.citedreferenceDal Canto MC. 1996. The Golgi apparatus and the pathogenesis of Alzheimer's disease. Am J Pathol 148: 355 – 60.en_US
dc.identifier.citedreferenceAndo K, Iijima KI, Elliott JI, Kirino Y, et al. 2001. Phosphorylation‐dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta‐amyloid. J Biol Chem 276: 40353 – 61.en_US
dc.identifier.citedreferenceRebelo S, Vieira SI, Esselmann H, Wiltfang J, et al. 2007. Tyrosine 687 phosphorylated Alzheimer's amyloid precursor protein is retained intracellularly and exhibits a decreased turnover rate. Neurodegener Dis 4: 78 – 87.en_US
dc.identifier.citedreferenceAndo K, Oishi M, Takeda S, Iijima K, et al. 1999. Role of phosphorylation of Alzheimer's amyloid precursor protein during neuronal differentiation. J Neurosci 19: 4421 – 7.en_US
dc.identifier.citedreferenceLee MS, Kao SC, Lemere CA, Xia W, et al. 2003. APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163: 83 – 95.en_US
dc.identifier.citedreferenceHaass C, Koo EH, Capell A, Teplow DB, et al. 1995. Polarized sorting of beta‐amyloid precursor protein and its proteolytic products in MDCK cells is regulated by two independent signals. J Cell Biol 128: 537 – 47.en_US
dc.identifier.citedreferenceVieira SI, Rebelo S, Domingues SC, da Cruz e Silva EF, et al. 2009. S655 phosphorylation enhances APP secretory traffic. Mol Cell Biochem 328: 145 – 54.en_US
dc.identifier.citedreferenceHuovila AP, Turner AJ, Pelto‐Huikko M, Karkkainen I, et al. 2005. Shedding light on ADAM metalloproteinases. Trends Biochem Sci 30: 413 – 22.en_US
dc.identifier.citedreferenceWalter J, Fluhrer R, Hartung B, Willem M, et al. 2001. Phosphorylation regulates intracellular trafficking of beta‐secretase. J Biol Chem 276: 14634 – 41.en_US
dc.identifier.citedreferenceSeidah NG, Chretien M. 1999. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res 848: 45 – 62.en_US
dc.identifier.citedreferenceCapell A, Steiner H, Willem M, Kaiser H, et al. 2000. Maturation and pro‐peptide cleavage of beta‐secretase. J Biol Chem 275: 30849 – 54.en_US
dc.identifier.citedreferenceVassar R, Bennett BD, Babu‐Khan S, Kahn S, et al. 1999. Beta‐secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286: 735 – 41.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.