Show simple item record

ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications

dc.contributor.authorHartinger, M. D.en_US
dc.contributor.authorMoldwin, M. B.en_US
dc.contributor.authorZou, S.en_US
dc.contributor.authorBonnell, J. W.en_US
dc.contributor.authorAngelopoulos, V.en_US
dc.date.accessioned2015-03-05T18:24:49Z
dc.date.available2016-03-02T19:36:55Zen
dc.date.issued2015-01en_US
dc.identifier.citationHartinger, M. D.; Moldwin, M. B.; Zou, S.; Bonnell, J. W.; Angelopoulos, V. (2015). "ULF wave electromagnetic energy flux into the ionosphere: Joule heating implications." Journal of Geophysical Research: Space Physics 120(1): 494-510.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110767
dc.description.abstractUltralow‐frequency (ULF) waves—in particular, Alfvén waves–transfer energy into the Earth's ionosphere via Joule heating, but it is unclear how much they contribute to global and local heating rates relative to other energy sources. In this study we use Time History of Events and Macroscale Interactions during Substorms satellite data to investigate the spatial, frequency, and geomagnetic activity dependence of the ULF wave Poynting vector (electromagnetic energy flux) mapped to the ionosphere. We use these measurements to estimate Joule heating rates, covering latitudes at or below the nominal auroral oval and below the open/closed field line boundary. We find ULF wave Joule heating rates (integrated over 3–30 mHz frequency band) typically range from 0.001 to 1 mW/m2. We compare these rates to empirical models of Joule heating associated with large‐scale, static (on ULF wave timescales) current systems, finding that ULF waves nominally contribute little to the global, integrated Joule heating rate. However, there are extreme cases with ULF wave Joule heating rates of ≥10 mW/m2—in these cases, which are more likely to occur when Kp ≥ 3, ULF waves make significant contributions to the global Joule heating rate. We also find ULF waves routinely make significant contributions to local Joule heating rates near the noon and midnight local time sectors, where static current systems nominally contribute less to Joule heating; the most important contributions come from lower frequency (<7 mHz) waves.Key PointsULF waves nominally make small contributions to global Joule heatingContributions to global heating are significant in extreme eventsULF waves nominally make important contributions to local Joule heatingen_US
dc.publisherAcademicen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherJoule heatingen_US
dc.subject.otherULF waveen_US
dc.subject.otherPoynting vectoren_US
dc.subject.otherionosphereen_US
dc.subject.otherfield line resonanceen_US
dc.subject.otherAlfvén waveen_US
dc.titleULF wave electromagnetic energy flux into the ionosphere: Joule heating implicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110767/1/jgra51567-sup-0002-fs01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110767/2/jgra51567-sup-0003-fs02.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110767/3/jgra51567.pdf
dc.identifier.doi10.1002/2014JA020129en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceNewton, R. S., D. J. Southwood, and W. J. Hughes ( 1978 ), Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26, 201 – 209, doi: 10.1016/0032-0633(78)90085-5.en_US
dc.identifier.citedreferenceKnipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake ( 2011 ), Extreme Poynting flux in the dayside thermosphere: Examples and statistics, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.en_US
dc.identifier.citedreferenceLathuillere, C., F. Glangeaud, and Z. Y. Zhao ( 1986 ), Ionospheric ion heating by ULF Pc5 magnetic pulsations, J. Geophys. Res., 91, 1619 – 1626, doi: 10.1029/JA091iA02p01619.en_US
dc.identifier.citedreferenceLe, G., P. J. Chi, R. J. Strangeway, and J. A. Slavin ( 2011 ), Observations of a unique type of ULF wave by low‐altitude space technology 5 satellites, J. Geophys. Res., 116, A08203, doi: 10.1029/2011JA016574.en_US
dc.identifier.citedreferenceLysak, R. L. ( 1988a ), Electrodynamic coupling of the magnetosphere and ionosphere, Space Sci. Rev., 52, 33 – 87, doi: 10.1007/BF00704239.en_US
dc.identifier.citedreferenceLysak, R. L. ( 1988b ), Theory of auroral zone PiB pulsation spectra, J. Geophys. Res., 93, 5942 – 5946, doi: 10.1029/JA093iA06p05942.en_US
dc.identifier.citedreferenceMann, I. R. ( 1995 ), Coupling of magnetospheric cavity modes to field line resonances: A study of resonance widths, J. Geophys. Res., 100, 19,441 – 19,456, doi: 10.1029/95JA00820.en_US
dc.identifier.citedreferenceMann, I. R. ( 1997 ), On the internal radial structure of field line resonances, J. Geophys. Res., 102, 27,109 – 27,119, doi: 10.1029/97JA02385.en_US
dc.identifier.citedreferenceMcFadden, J. P., C. W. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, P. Turin, M. Marckwordt, and V. Angelopoulos ( 2008 ), The THEMIS ESA plasma instrument and in‐flight calibration, Space Sci. Rev., 141, 277 – 302, doi: 10.1007/s11214-008-9440-2.en_US
dc.identifier.citedreferenceNishimura, Y., T. Kikuchi, A. Shinbori, J. Wygant, Y. Tsuji, T. Hori, T. Ono, S. Fujita, and T. Tanaka ( 2010 ), Direct measurements of the Poynting flux associated with convection electric fields in the magnetosphere, J. Geophys. Res., 115, A12212, doi: 10.1029/2010JA015491.en_US
dc.identifier.citedreferenceOlsson, A., P. Janhunen, T. Karlsson, N. Ivchenko, and L. Blomberg ( 2004 ), Statistics of Joule heating in the auroral zone and polar cap using Astrid‐2 satellite Poynting flux, Ann. Geophys., 22, 4133 – 4142, doi: 10.5194/angeo-22-4133-2004.en_US
dc.identifier.citedreferenceQin, Z., R. E. Denton, N. A. Tsygnanenko, and S. Wolf ( 2007 ), Solar wind parameters for magnetospheric magnetic field modeling, Space Weather, 5, S11003, doi: 10.1029/2006SW000296.en_US
dc.identifier.citedreferenceRae, I. J., C. E. J. Watt, F. R. Fenrich, I. R. Mann, L. G. Ozeke, and A. Kale ( 2007 ), Energy deposition in the ionosphere through a global field line resonance, Ann. Geophys., 25, 2529 – 2539, doi: 10.5194/angeo-25-2529-2007.en_US
dc.identifier.citedreferenceSibeck, D. G., and V. Angelopoulos ( 2008 ), THEMIS science objectives and mission phases, Space Sci. Rev., 141, 35 – 59, doi: 10.1007/s11214-008-9393-5.en_US
dc.identifier.citedreferenceSinger, H. J., D. J. Southwood, R. J. Walker, and M. G. Kivelson ( 1981 ), Alfven wave resonances in a realistic magnetospheric magnetic field geometry, J. Geophys. Res., 86, 4589 – 4596, doi: 10.1029/JA086iA06p04589.en_US
dc.identifier.citedreferenceShue, J. H., and D. R. Weimer ( 1994 ), The relationship between ionospheric convection and magnetic activity, J. Geophys. Res., 99, 401 – 416, doi: 10.1029/93JA01946.en_US
dc.identifier.citedreferenceStrangeway, R. J., R. E. Ergun, Y. J. Su, C. W. Carlson, and R. C. Elphic ( 2005 ), Factors controlling ionospheric outflows as observed at intermediate altitudes, J. Geophys. Res., 110, A03221, doi: 10.1029/2004JA010829.en_US
dc.identifier.citedreferenceTakahashi, K., and B. J. Anderson ( 1992 ), Distribution of ULF energy (f < 80 mHz) in the inner magnetosphere—A statistical analysis of AMPTE CCE magnetic field data, J. Geophys. Res., 97, 10,751 – 10,773, doi: 10.1029/92JA00328.en_US
dc.identifier.citedreferenceTakahashi, K., K. Yumoto, S. G. Claudepierre, E. R. Sanchez, O. A Troshichev, and A. S. Janzhura ( 2012 ), Dependence of the amplitude of Pc5‐band magnetic field variations on the solar wind and solar activity, J. Geophys. Res., 117, A04207, doi: 10.1029/2011JA017120.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5 – 20, doi: 10.1016/0032-0633(89)90066-4.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 2002 ), A model of the near magnetosphere with a dawn‐dusk asymmetry 2. Parameterization and fitting to observations, J. Geophys. Res., 107 ( A8 ), 1176, doi: 10.1029/2001JA000220.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and D. P. Stern ( 1996 ), Modeling the global magnetic field of the large‐scale Birkeland current systems, J. Geophys. Res., 101, 27,187 – 27,198, doi: 10.1029/96JA02735.en_US
dc.identifier.citedreferenceTurner, D. L., Y. Shprits, M. Hartinger, and V. Angelopoulos ( 2012 ), Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nat. Phys., 8, 208 – 212, doi: 10.1038/NPHYS2185.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.en_US
dc.identifier.citedreferenceWygant, J. R., et al. ( 2002 ), Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 R E altitudes in the plasma sheet boundary layer, J. Geophys. Res., 107 ( A8 ), 1201, doi: 10.1029/2001JA900113.en_US
dc.identifier.citedreferenceAllan, W., S. P. White, and E. M. Poulter ( 1986 ), Impulse‐excited hydromagnetic cavity and field‐line resonances in the magnetosphere, Planet. Space Sci., 34, 371 – 385, doi: 10.1016/0032-0633(86)90144-3.en_US
dc.identifier.citedreferenceAnderson, B. J., M. J. Engebretson, and L. J. Zanetti ( 1989 ), Distortion effects in spacecraft observations of MHD toroidal standing waves—Theory and observations, J. Geophys. Res., 94, 13,425 – 13,445, doi: 10.1029/JA094iA10p13425.en_US
dc.identifier.citedreferenceAnderson, B. J., M. J. Engebretson, S. P. Rounds, L. J. Zanetti, and T. A. Potemra ( 1990 ), A statistical study of Pc 3–5 pulsations observed by the AMPTE/CCE magnetic fields experiment. I. Occurrence distributions, J. Geophys. Res., 95, 10,495 – 10,523, doi: 10.1029/JA095iA07p10495.en_US
dc.identifier.citedreferenceAngelopoulos, V., J. A. Chapman, F. S. Mozer, J. D. Scudder, C. T. Russell, K. Tsuruda, T. Mukai, T. J. Hughes, and K. Yumoto ( 2002 ), Plasma sheet electromagnetic power generation and its dissipation along auroral field lines, J. Geophys. Res., 107 ( A8 ), 1181, doi: 10.1029/2001JA900136.en_US
dc.identifier.citedreferenceAuster, H. U., et al. ( 2008 ), The THEMIS fluxgate magnetometer, Space Sci. Rev., 141, 235 – 264, doi: 10.1007/s11214-008-9365-9.en_US
dc.identifier.citedreferenceBonnell, J. W., F. S. Mozer, G. T. Delory, A. J. Hull, R. E. Ergun, C. M. Cully, V. Angelopoulos, and P. R. Harvey ( 2008 ), The Electric Field Instrument (EFI) for THEMIS, Space Sci. Rev., 141, 303 – 341, doi: 10.1007/s11214-008-9469-2.en_US
dc.identifier.citedreferenceChaston, C. C., et al. ( 2005 ), Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations, J. Geophys. Res., 110, A02211, doi: 10.1029/2004JA010483.en_US
dc.identifier.citedreferenceCodrescu, M. V., T. J. Fuller‐Rowell, and J. C. Foster ( 1995 ), On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere, Geophys. Res. Lett., 22, 2393 – 2396, doi: 10.1029/95GL01909.en_US
dc.identifier.citedreferenceCosgrove, R. B., M. Alhassan, Y. Xu, M. Van Welie, J. Rehberger, S. Musielak, and N. Cahill ( 2014 ), Empirical model of Poynting flux derived from FAST data and a cusp signature, J. Geophys. Res. Space Physics, 119, 411 – 430, doi: 10.1002/2013JA019105.en_US
dc.identifier.citedreferenceCrowley, G., N. Wade, J. A. Waldock, T. R. Robinson, and T. B. Jones ( 1985 ), High time‐resolution observations of periodic frictional heating associated with a Pc5 micropulsation, Nature, 316, 528 – 530, doi: 10.1038/316528a0.en_US
dc.identifier.citedreferenceDamiano, P. A., A. N. Wright, R. D. Sydora, and J. C. Samson ( 2007 ), Energy dissipation via electron energization in standing shear Alfvén waves, Phys. Plasmas, 14, 062904, doi: 10.1063/1.2744226.en_US
dc.identifier.citedreferenceDessler, A. J. ( 1959a ), Upper atmosphere density variations due to hydromagnetic heating, Nature, 184, 261 – 262, doi: 10.1038/184261b0.en_US
dc.identifier.citedreferenceDessler, A. J. ( 1959b ), Ionospheric heating by hydromagnetic waves, J. Geophys. Res., 64 ( 4 ), 397 – 401, doi: 10.1029/JZ064i004p00397.en_US
dc.identifier.citedreferenceDombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder ( 2005 ), Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer, J. Geophys. Res., 110, A12S90, doi: 10.1029/2005JA011269.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1967 ), Hydromagnetic waves, in Physics of Geomagnetic Phenomena, edited by S. Matsushita and W. H. Campbell, Academic, New York.en_US
dc.identifier.citedreferenceEfron, B., and R. J. Tibshirani ( 1993 ), An Introduction to the Bootstrap, CRC Press, Boca Raton, Fla.en_US
dc.identifier.citedreferenceFrey, S., V. Angelopoulos, M. Bester, J. Bonnell, T. Phan, and D. Rummel ( 2008 ), Orbit design for the THEMIS mission, Space Sci. Rev., 141, 61 – 89, doi: 10.1007/s11214-008-9441-1.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan ( 1994 ), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893 – 3914, doi: 10.1029/93JA02015.en_US
dc.identifier.citedreferenceGary, J. B., R. A. Heelis, and J. P. Thayer ( 1995 ), Summary of field‐aligned Poynting flux observations from DE 2, Geophys. Res. Lett., 22, 1861 – 1864, doi: 10.1029/95GL00570.en_US
dc.identifier.citedreferenceGlassmeier, K. H., H. Volpers, and W. Baumjohann ( 1984 ), Ionospheric Joule dissipation as a damping mechanism for high latitude ULF pulsations—Observational evidence, Planet. Space Sci., 32, 1463 – 1466, doi: 10.1016/0032-0633(84)90088-6.en_US
dc.identifier.citedreferenceGreenwald, R. A., and A. D. M. Walker ( 1980 ), Energetics of long period resonant hydromagnetic waves, Geophys. Res. Lett., 7, 745 – 748, doi: 10.1029/GL007i010p00745.en_US
dc.identifier.citedreferenceHardy, D. A., M. S. Gussenhoven, R. Raistrick, and W. J. McNeil ( 1987 ), Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275 – 12,294, doi: 10.1029/JA092iA11p12275.en_US
dc.identifier.citedreferenceHartinger, M., V. Angelopoulos, M. B. Moldwin, K. ‐H. Glassmeier, and Y. Nishimura ( 2011 ), Global energy transfer during a magnetospheric field line resonance, Geophys. Res. Lett., 38, L12101, doi: 10.1029/2011GL047846.en_US
dc.identifier.citedreferenceHartinger, M. D., M. B. Moldwin, K. Takahashi, J. W. Bonnell, and V. Angelopoulos ( 2013 ), Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane, J. Geophys. Res. Space Physics, 118, 6212 – 6227, doi: 10.1002/jgra.50591.en_US
dc.identifier.citedreferenceHughes, W. J., and D. J. Southwood ( 1976 ), The screening of micropulsation signals by the atmosphere and ionosphere, J. Geophys. Res., 81, 3234 – 3240, doi: 10.1029/JA081i019p03234.en_US
dc.identifier.citedreferenceIijima, T., and T. A. Potemra ( 1978 ), Large‐scale characteristics of field‐aligned currents associated with substorms, J. Geophys. Res., 83, 599 – 615, doi: 10.1029/JA083iA02p00599.en_US
dc.identifier.citedreferenceJacobs, J. A., Y. Kato, S. Matsushita, and V. A. Troitskaya ( 1964 ), Classification of geomagnetic micropulsations, J. Geophys. Res., 69, 180 – 181, doi: 10.1029/JZ069i001p00180.en_US
dc.identifier.citedreferenceJanhunen, P., A. Olsson, N. A. Tsyganenko, C. T. Russell, H. Laakso, and L. G. Blomberg ( 2005 ), Statistics of a parallel Poynting vector in the auroral zone as a function of altitude using Polar EFI and MFE data and Astrid‐2 EMMA data, Ann. Geophys., 23, 1797 – 1806, doi: 10.5194/angeo-23-1797-2005.en_US
dc.identifier.citedreferenceKeiling, A. ( 2009 ), Alfvén waves and their roles in the dynamics of the Earth's magnetotail: A review, Space Sci. Rev., 142, 73 – 156, doi: 10.1007/s11214-008-9463-8.en_US
dc.identifier.citedreferenceKeiling, A., J. R. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F. S. Mozer, C. T. Russell, and C. A. Kletzing ( 2002 ), Correlation of Alfvén wave Poynting flux in the plasma sheet at 4–7 R E with ionospheric electron energy flux, J. Geophys. Res., 107 ( A7 ), 1132, doi: 10.1029/2001JA900140.en_US
dc.identifier.citedreferenceKeiling, A., J. R. Wygant, C. A. Cattell, F. S. Mozer, and C. T. Russell ( 2003 ), The global morphology of wave Poynting flux: Powering the aurora, Science, 299, 383 – 396, doi: 10.1126/science.1080073.en_US
dc.identifier.citedreferenceKivelson, M. G., and C. T. Russell (Ed.) ( 1995 ), Introduction to Space Physics, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.