Show simple item record

Porous Solids Arising from Synergistic and Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation

dc.contributor.authorDutta, Ananyaen_US
dc.contributor.authorKoh, Kyoungmooen_US
dc.contributor.authorWong‐foy, Antek G.en_US
dc.contributor.authorMatzger, Adam J.en_US
dc.date.accessioned2015-04-02T15:12:04Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03-23en_US
dc.identifier.citationDutta, Ananya; Koh, Kyoungmoo; Wong‐foy, Antek G. ; Matzger, Adam J. (2015). "Porous Solids Arising from Synergistic and Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formation." Angewandte Chemie International Edition 54(13): 3983-3987.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110813
dc.description.abstractDesign and synthesis of porous solids employing both reversible coordination chemistry and reversible covalent bond formation is described. The combination of two different linkage modes in a single material presents a link between two distinct classes of porous materials as exemplified by metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). This strategy, in addition to being a compelling material‐discovery method, also offers a platform for developing a fundamental understanding of the factors influencing the competing modes of assembly. We also demonstrate that even temporary formation of reversible connections between components may be leveraged to make new phases thus offering design routes to polymorphic frameworks. Moreover, this approach has the striking potential of providing a rich landscape of structurally complex materials from commercially available or readily accessible feedstocks.Teamwork saves the day when coordination chemistry and covalent bond formation can both occur in a single material. A balance between the incubation time of the organic components and solvent decomposition/base formation governs the competition between the two processes and determines the phase outcome. Even the temporary formation of reversible connections between components can be leveraged to make new phases.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.othermetal–organic frameworksen_US
dc.subject.othercoordination modesen_US
dc.subject.othercovalent organic frameworksen_US
dc.subject.othercrystal engineeringen_US
dc.subject.othermicroporous materialsen_US
dc.titlePorous Solids Arising from Synergistic and Competing Modes of Assembly: Combining Coordination Chemistry and Covalent Bond Formationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationumDepartment of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherCurrent address: The Dow Chemical Company, Core R&D, Midland, MI 48674 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110813/1/anie_201411735_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110813/2/3983_ftp.pdf
dc.identifier.doi10.1002/anie.201411735en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceS. R. Caskey, A. G. Wong‐Foy, A. J. Matzger, Inorg. Chem. 2008, 47, 7751 – 7756.en_US
dc.identifier.citedreferenceH. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature 1999, 402, 276 – 279.en_US
dc.identifier.citedreferenceA. P. Côté, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166 – 1170.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. Hausdorf, J. Wagler, R. Moßig, F. O. R. L. Mertens, J. Phys. Chem. A 2008, 112, 7567 – 7576;en_US
dc.identifier.citedreferenceS. Hausdorf, F. Baitalow, J. Seidel, F. O. R. L. Mertens, J. Phys. Chem. A 2007, 111, 4259 – 4266.en_US
dc.identifier.citedreferenceT. E. Reich, K. T. Jackson, S. Li, P. Jena, H. M. El‐Kaderi, J. Mater. Chem. 2011, 21, 10629 – 10632.en_US
dc.identifier.citedreferenceD. Beaudoin, T. Maris, J. D. Wuest, Nat. Chem. 2013, 5, 830 – 834.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceF. J. Uribe‐Romo, J. R. Hunt, H. Furukawa, C. Klöck, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2009, 131, 4570 – 4571;en_US
dc.identifier.citedreferenceC. R. DeBlase, K. E. Silberstein, T.‐T. Truong, H. D. Abruña, W. R. Dichtel, J. Am. Chem. Soc. 2013, 135, 16821 – 16824.en_US
dc.identifier.citedreferenceF. J. Uribe‐Romo, C. J. Doonan, H. Furukawa, K. Oisaki, O. M. Yaghi, J. Am. Chem. Soc. 2011, 133, 11478 – 11481.en_US
dc.identifier.citedreferenceIn this context it should be noted that in situ ligand formation from irreversible covalent coupling in tandem with coordination chemistry has been demonstrated. See for example: D. Zhao, D. Yuan, A. Yakovenko, H.‐C. Zhou, Chem. Commun. 2010, 46, 4196 – 4199.en_US
dc.identifier.citedreferenceH. K. Chae, D. Y. Siberio‐Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O’Keeffe, O. M. Yaghi, Nature 2004, 427, 523 – 527.en_US
dc.identifier.citedreferenceA role for diethylamine as a competitive species for imine formation cannot be ruled out as an additional contributing factor.en_US
dc.identifier.citedreferenceTo our knowledge, ketimine COFs are absent from the literature.en_US
dc.identifier.citedreferenceAs we have noted elsewhere, and in contrast to its misuse in the field, such framework materials must not be termed “polymorphs”. Polymorphs have a strict isomeric relationship that is not easily satisfied in porous material containing varying degrees of solvation. This fact motivates the use of the present term “polymorphic frameworks”. The distinction is critical because, for example, stability ordering of polymorphic framework materials is expected to be solvent dependent whereas this is forbidden for true polymorphs. In fact, the closest molecular analogy is in solvate stability where solvate inclusion engenders relative stability relationships that can depend strongly on solvent and temperature. In molecular compounds such relationships are sometimes termed “pseudopolymorphic”. Thus by this logic the different topologies of coordination polymers could be considered to be pseudopolymorphs. However, such a term is esoteric and subject to debate even within the small‐molecule community and so “polymorphic framework” is preferred.en_US
dc.identifier.citedreferenceV. A. Blatov, L. Carlucci, G. Ciani, D. M. Proserpio, CrystEngComm 2004, 6, 378 – 395.en_US
dc.identifier.citedreferenceZ. Zhang, M. J. Zaworotko, Chem. Soc. Rev. 2014, 43, 5444 – 5455.en_US
dc.identifier.citedreferenceJ. Rouquerol, P. Llewellyn, F. Rouquerol in Studies in Surface Science and Catalysis, Vol. 160 (Eds.: F. R.‐R. J. R. P. L. Llewellyn, N. Seaton ), Elsevier, Amsterdam, 2007, pp.  49 – 56.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.