Show simple item record

Identification of FAK substrate peptides via colorimetric screening of a one‐bead one‐peptide combinatorial library

dc.contributor.authorWitucki, Laurie A.en_US
dc.contributor.authorBorowicz, Lauren Sanforden_US
dc.contributor.authorPedley, Anthony M.en_US
dc.contributor.authorCurtis‐fisk, Jaimeen_US
dc.contributor.authorKuszpit, Elizabeth Girnysen_US
dc.date.accessioned2015-04-02T15:12:05Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationWitucki, Laurie A.; Borowicz, Lauren Sanford; Pedley, Anthony M.; Curtis‐fisk, Jaime ; Kuszpit, Elizabeth Girnys (2015). "Identification of FAK substrate peptides via colorimetric screening of a oneâ bead oneâ peptide combinatorial library." Journal of Peptide Science 21(4): 302-311.en_US
dc.identifier.issn1075-2617en_US
dc.identifier.issn1099-1387en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110814
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.othercombinatorial peptide libraryen_US
dc.subject.othertyrosine kinaseen_US
dc.subject.otherFAKen_US
dc.subject.othersubstrate specificityen_US
dc.subject.othercolorimetricen_US
dc.titleIdentification of FAK substrate peptides via colorimetric screening of a one‐bead one‐peptide combinatorial libraryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110814/1/psc2751.pdf
dc.identifier.doi10.1002/psc.2751en_US
dc.identifier.sourceJournal of Peptide Scienceen_US
dc.identifier.citedreferenceWu JJ, Afar DE, Phan H, Witte ON, Lam KS. Recognition of multiple substrate motifs by the c‐ABL protein tyrosine kinase. Comb. Chem. High Throughput Screen. 2002; 5: 83 – 91.en_US
dc.identifier.citedreferenceInfante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, Fingert H, Pierce KJ, Xu H, Roberts WG, Shreeve SM, Burris HA, Siu LL. Safety, pharmacokinetic, and pharmacodynamic phase I dose‐escalation trial of PF‐00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J. Clin. Oncol. 2012; 30: 1527 – 1533. DOI: 10.1200/JCO.2011.38.9346.en_US
dc.identifier.citedreferenceFalciani C, Lozzi L, Pini A, Bracci L. Bioactive peptides from libraries. Chem. Biol. 2005; 12: 417 – 426. DOI: 10.1016/j.chembiol.2005.02.009.en_US
dc.identifier.citedreferenceLou Q, Leftwich ME, Lam KS. Identification of GIYWHHY as a novel peptide substrate for human p60 c‐src protein tyrosine kinase. Bioorg. Med. Chem. 1996; 4: 677 – 682. DOI: 10.1016/0968-0896(96)00063-6.en_US
dc.identifier.citedreferenceLam KS, Wu J, Lou Q. Identification and characterization of a novel synthetic peptide substrate specific for Src‐family protein tyrosine kinases. Int. J. Pept. Protein Res. 1995; 45: 587 – 592. DOI: 10.1111/j.1399-3011.1995.tb01323.x.en_US
dc.identifier.citedreferenceKim Y‐G, Shin D‐S, Kim E‐M, Park H‐Y, Lee C‐S, Kim J‐H, Lee B‐S, Lee Y‐S, Kim B‐G. High‐throughput identification of substrate specificity for protein kinase by using an improved one‐bead‐one‐compound library approach. Angew. Chem. 2007; 119: 5504 – 5507. DOI: 10.1002/ange.200700195.en_US
dc.identifier.citedreferenceLam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ. A new type of synthetic peptide library for identifying ligand‐binding activity. Nature 1991; 354: 82 – 84. DOI: 10.1038/354082a0.en_US
dc.identifier.citedreferenceLam KS, Lebl M, Krchňák V. The “one‐bead‐one‐compound” combinatorial library method. Chem. Rev. 1997; 97: 411 – 448. DOI: 10.1021/cr9600114.en_US
dc.identifier.citedreferenceMcBride JD, Freeman HN, Leatherbarrow RJ. Identification of chymotrypsin inhibitors from a second‐generation template assisted combinatorial peptide library. J. Pept. Sci. 2000; 6: 446 – 452. DOI: 10.1002/1099-1387(200009)6:9<446::aid-psc283>3.0.co;2-u.en_US
dc.identifier.citedreferenceMarani MM, Oliveira E, Côte S, Camperi SA, Albericio F, Cascone O. Identification of protein‐binding peptides by direct matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry analysis of peptide beads selected from the screening of one bead–one peptide combinatorial libraries. Anal. Biochem. 2007; 370: 215 – 222. DOI: 10.1016/j.ab.2007.07.032.en_US
dc.identifier.citedreferenceBeebe KD, Wang P, Arabaci G, Pei D. Determination of the binding specificity of the SH2 domains of protein tyrosine phosphatase SHP‐1 through the screening of a combinatorial phosphotyrosyl peptide library. Biochemistry 2000; 39: 13251 – 13260.en_US
dc.identifier.citedreferenceWavreille A‐S, Garaud M, Zhang Y, Pei D. Defining SH2 domain and PTP specificity by screening combinatorial peptide libraries. Methods 2007; 42: 207 – 219. DOI: 10.1016/j.ymeth.2007.02.010.en_US
dc.identifier.citedreferenceSongyang Z, Carraway KL, III, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C, Lorenzo MJ, Poner BAJ, Mayer BJ, Cantley LC. Catalytic specificity of protein‐tyrosine kinases is critical for selective signalling. Nature 1995; 373: 536 – 539.en_US
dc.identifier.citedreferenceLam KS, Liu R, Miyamoto S, Lehman AL, Tuscano JM. Applications of one‐bead one‐compound combinatorial libraries and chemical microarrays in signal transduction research. Acc. Chem. Res. 2003; 36: 370 – 377. DOI: 10.1021/ar0201299.en_US
dc.identifier.citedreferenceKim M, Shin DS, Kim J, Lee YS. Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers 2010; 94: 753 – 762. DOI: 10.1002/bip.21506.en_US
dc.identifier.citedreferenceMartin SE, Peterson BR. A colorimetric enzyme‐linked on‐bead assay for identification of synthetic substrates of protein tyrosine kinases. J. Pept. Sci. 2002; 8: 227 – 233. DOI: 10.1002/psc.376.en_US
dc.identifier.citedreferenceBraun S, Raymond WE, Racker E. Synthetic tyrosine polymers as substrates and inhibitors of tyrosine‐specific protein kinases. J. Biol. Chem. 1984; 259: 2051 – 2054.en_US
dc.identifier.citedreferenceSongyang Z, Carraway KL, Eck MJ, Harrison SC, Feldman RA, Mohammadi M, Schlessinger J, Hubbard SR, Smith DP, Eng C, Lorenzo MJ, Ponder BAJ, Mayer BJ, Cantley LC. Catalytic specificity of protein‐tyrosine kinases is critical for selective signalling. Nature 1995; 373: 536 – 539.en_US
dc.identifier.citedreferenceSongyang Z, Cantley LC. Recognition and specificity in protein tyrosine kinase‐mediated signalling. Trends Biochem. Sci. 1995; 20: 470 – 475. DOI: 10.1016/S0968-0004(00)89103-3.en_US
dc.identifier.citedreferenceSwarup G, Dasgupta JD, Garbers DL. Tyrosine protein kinase activity of rat spleen and other tissues. J. Biol. Chem. 1983; 258: 10341 – 10347.en_US
dc.identifier.citedreferenceHastie CJ, McLauchlan HJ, Cohen P. Assay of protein kinases using radiolabeled ATP: a protocol. Nat. Protocols 2006; 1: 968 – 971.en_US
dc.identifier.citedreferenceCasnellie JE, Harrison ML, Pike LJ, Hellström KE, Krebs EG. Phosphorylation of synthetic peptides by a tyrosine protein kinase from the particulate fraction of a lymphoma cell line. Proc. Natl. Acad. Sci. U. S. A. 1982; 79: 282 – 286.en_US
dc.identifier.citedreferenceHouseman BT, Huh JH, Kron SJ, Mrksich M. Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 2002; 20: 270 – 274. DOI: 10.1038/nbt0302-270.en_US
dc.identifier.citedreferenceSchmitz R, Baumann G, Gram H. Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c‐Src and Syk as assessed by phage display. J. Mol. Biol. 1996; 260: 664 – 677. DOI: 10.1006/jmbi.1996.0429.en_US
dc.identifier.citedreferenceDente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci PG, Cesareni G. Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J. Mol. Biol. 1997; 269: 694 – 703. DOI: 10.1006/jmbi.1997.1073.en_US
dc.identifier.citedreferenceLipchik AM, Killins RL, Geahlen RL, Parker LL. A peptide‐based biosensor assay to detect intracellular syk kinase activation and inhibition. Biochemistry 2012; 51: 7515 – 7524. DOI: 10.1021/bi300970h.en_US
dc.identifier.citedreferencePlaczek EA, Plebanek MP, Lipchik AM, Kidd SR, Parker LL. A peptide biosensor for detecting intracellular Abl kinase activity using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. Anal. Biochem. 2010; 397: 73 – 78. DOI: 10.1016/j.ab.2009.09.048.en_US
dc.identifier.citedreferenceNowakowski J, Cronin CN, McRee DE, Knuth MW, Nelson CG, Pavletich NP, Rogers J, Sang B‐C, Scheibe DN, Swanson RV, Thompson DA. Structures of the cancer‐related Aurora‐A, FAK, and EphA2 protein kinases from nanovolume crystallography. Structure 2002; 10: 1659 – 1667. DOI: 10.1016/S0969-2126(02)00907-3.en_US
dc.identifier.citedreferenceWozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim. Biophys. Acta 2004; 1692: 103 – 119. DOI: 10.1016/j.bbamcr.2004.04.007.en_US
dc.identifier.citedreferenceGeiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 2009; 10: 21 – 33. DOI: 10.1038/nrm2593.en_US
dc.identifier.citedreferenceZaidel‐Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat. Cell Biol. 2007; 9: 858 – 867. DOI: 10.1038/ncb0807-858.en_US
dc.identifier.citedreferenceSchaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. Pp125FAK a structurally distinctive protein‐tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. Sci. U. S. A. 1992; 89: 5192 – 5196.en_US
dc.identifier.citedreferenceComoglio PM, Boccaccio C, Trusolino L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. 2003; 15: 565 – 571. DOI: 10.1016/S0955-0674(03)00096-6.en_US
dc.identifier.citedreferenceSieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth‐factor and integrin signals to promote cell migration. Nat. Cell Biol. 2000; 2: 249 – 256. DOI: 10.1038/35010517.en_US
dc.identifier.citedreferenceSchaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR, Parsons JT. Autophosphorylation of the focal adhesion kinase, pp125fak, directs SH2‐dependent binding of pp60src. Mol. Cell. Biol. 1994; 14: 1680 – 1688. DOI: 10.1128/MCB.14.3.1680.en_US
dc.identifier.citedreferenceXing Z, Chen HC, Nowlen JK, Taylor SJ, Shalloway D, Guan JL. Direct interaction of v‐Src with the focal adhesion kinase mediated by the Src SH2 domain. Mol. Biol. Cell 1994; 5: 413 – 421. DOI: 10.1091/mbc.5.4.413.en_US
dc.identifier.citedreferenceSchlaepfer DD, Hanks SK, Hunter T, Geer P. Integrin‐mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786 – 791. DOI: 10.1038/372786a0.en_US
dc.identifier.citedreferenceSchlaepfer DD, Jones KC, Hunter T. Multiple Grb2‐mediated integrin‐stimulated signaling pathways to ERK2/mitogen‐activated protein kinase: summation of both c‐Src‐ and focal adhesion kinase‐initiated tyrosine phosphorylation events. Mol. Cell. Biol. 1998; 18: 2571 – 2585.en_US
dc.identifier.citedreferenceChan PC, Lai JF, Cheng CH, Tang MJ, Chiu CC, Chen HC. Suppression of ultraviolet irradiation‐induced apoptosis by overexpression of focal adhesion kinase in Madin‐Darby canine kidney cells. J. Biol. Chem. 1999; 274: 26901 – 26906.en_US
dc.identifier.citedreferenceSonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti‐apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor‐of‐apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL‐60. J. Biol. Chem. 2000; 275: 16309 – 16315.en_US
dc.identifier.citedreferenceLim S‐T, Chen XL, Lim Y, Hanson DA, Vo T‐T, Howerton K, Larocque N, Fisher SJ, Schlaepfer DD, Ilic D. Nuclear FAK promotes cell proliferation and survival through FERM‐enhanced p53 degradation. Mol. Cell 2008; 29: 9 – 22. DOI: 10.1016/j.molcel.2007.11.031.en_US
dc.identifier.citedreferenceTremblay L, Hauck W, Aprikian AG, Begin LR, Chapdelaine A, Chevalier S. Focal adhesion kinase (pp125FAK) expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int. J. Cancer 1996; 68: 164 – 171.en_US
dc.identifier.citedreferenceHarte MT, Hildebrand JD, Burnham MR, Bouton AH, Parsons JT. P130Cas, a substrate associated with v‐Src and v‐Crk, localizes to focal adhesions and binds to focal adhesion kinase. J. Biol. Chem. 1996; 271: 13649 – 13655.en_US
dc.identifier.citedreferenceShen Y, Schaller MD. Focal adhesion targeting: the critical determinant of FAK regulation and substrate phosphorylation. Mol. Biol. Cell 1999; 10: 2507 – 2518.en_US
dc.identifier.citedreferenceTachibana K, Urano T, Fujita H, Ohashi Y, Kamiguchi K, Iwata S, Hirai H, Morimoto C. Tyrosine phosphorylation of Crk‐associated substrates by focal adhesion kinase: a putative mechanism for the integrin‐mediated tyrosine phosphorylation of Crk‐associated substrates. J. Biol. Chem. 1997; 272: 29083 – 29090. DOI: 10.1074/jbc.272.46.29083.en_US
dc.identifier.citedreferenceHan DC, Shen T‐L, Guan J‐L. Role of Grb7 targeting to focal contacts and its phosphorylation by focal adhesion kinase in regulation of cell migration. J. Biol. Chem. 2000; 275: 28911 – 28917. DOI: 10.1074/jbc.M001997200.en_US
dc.identifier.citedreferenceGolubovskaya VM, Kweh FA, Cance WG. Focal adhesion kinase and cancer. Histol. Histopathol. 2009; 24: 503 – 510.en_US
dc.identifier.citedreferenceAkasaka T, van Leeuwen RL, Yoshinaga IG, Mihm MC, Jr, Byers HR. Focal adhesion kinase (p125FAK) expression correlates with motility of human melanoma cell lines. J. Invest. Dermatol. 1995; 105: 104 – 108.en_US
dc.identifier.citedreferenceCance WG, Harris JE, Iacocca MV, Roche E, Yang X, Chang J, Simkins S, Xu L. Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin. Cancer Res. 2000; 6: 2417 – 2423.en_US
dc.identifier.citedreferenceMcCormack SJ, Brazinski SE, Moore JL, Jr, Werness BA, Goldstein DJ. Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 1997; 15: 265 – 274. DOI: 10.1038/sj.onc.1201186.en_US
dc.identifier.citedreferenceMcLean GW, Avizienyte E, Frame MC. Focal adhesion kinase as a potential target in oncology. Expert Opin. Pharmacother. 2003; 4: 227 – 234. DOI: 10.1517/14656566.4.2.227.en_US
dc.identifier.citedreferenceZhao J, Guan J‐L. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009; 28: 35 – 49. DOI: 10.1007/s10555-008-9165-4.en_US
dc.identifier.citedreferenceJudson PL, He X, Cance WG, Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer 1999; 86: 1551 – 1556.en_US
dc.identifier.citedreferenceRecher C, Ysebaert L, Beyne‐Rauzy O, Mas VM‐D, Ruidavets J‐B, Cariven P, Demur C, Payrastre B, Laurent G, Racaud‐Sultan C. Expression of focal adhesion kinase in acute myeloid leukemia is associated with enhanced blast migration, increased cellularity, and poor prognosis. Cancer Res. 2004; 64: 3191 – 3197. DOI: 10.1158/0008-5472.CAN-03-3005.en_US
dc.identifier.citedreferenceSulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat. Rev. Cancer 2014; 14: 598 – 610. DOI: 10.1038/nrc3792.en_US
dc.identifier.citedreferenceJean C, Chen XL, Nam J‐O, Tancioni I, Uryu S, Lawson C, Ward KK, Walsh CT, Miller NLG, Ghassemian M, Turowski P, Dejana E, Weis S, Cheresh DA, Schlaepfer DD. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J. Cell Biol. 2014; 204: 247 – 263. DOI: 10.1083/jcb.201307067.en_US
dc.identifier.citedreferenceHochwald SN, Nyberg C, Zheng M, Zheng D, Wood C, Massoll NA, Magis A, Ostrov D, Cance WG, Golubovskaya VM. A novel small molecule inhibitor of FAK decreases growth of human pancreatic cancer. Cell Cy. (Georgetown, Tex.) 2009; 8: 2435 – 2443.en_US
dc.identifier.citedreferenceGolubovskaya VM, Figel S, Ho BT, Johnson CP, Yemma M, Huang G, Zheng M, Nyberg C, Magis A, Ostrov DA, Gelman IH, Cance WG. A small molecule focal adhesion kinase (FAK) inhibitor, targeting Y397 site: 1‐(2‐hydroxyethyl)‐3, 5, 7‐triaza‐1‐azoniatricyclo [3.3. 1.13, 7] decane; bromide effectively inhibits FAK autophosphorylation activity and decreases cancer cell viability, clonogenicity and tumor growth in vivo. Carcinogenesis 2012; 33: 1004 – 1013. DOI: 10.1093/carcin/bgs120.en_US
dc.identifier.citedreferenceGolubovskaya V, Beviglia L, Xu L‐H, Earp HS, Craven R, Cance W. Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor‐mediated apoptosis in human breast cancer cells. J. Biol. Chem. 2002; 277: 38978 – 38987. DOI: 10.1074/jbc.M205002200.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.