Show simple item record

Scn1b deletion leads to increased tetrodotoxin‐sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts

dc.contributor.authorLin, Xianmingen_US
dc.contributor.authorO'Malley, Heatheren_US
dc.contributor.authorChen, Chunlingen_US
dc.contributor.authorAuerbach, Daviden_US
dc.contributor.authorFoster, Moniqueen_US
dc.contributor.authorShekhar, Akshayen_US
dc.contributor.authorZhang, Mingliangen_US
dc.contributor.authorCoetzee, Williamen_US
dc.contributor.authorJalife, Joséen_US
dc.contributor.authorFishman, Glenn I.en_US
dc.contributor.authorIsom, Lorien_US
dc.contributor.authorDelmar, Marioen_US
dc.date.accessioned2015-04-02T15:12:10Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03-15en_US
dc.identifier.citationLin, Xianming; O'Malley, Heather; Chen, Chunling; Auerbach, David; Foster, Monique; Shekhar, Akshay; Zhang, Mingliang; Coetzee, William; Jalife, José ; Fishman, Glenn I.; Isom, Lori; Delmar, Mario (2015). "Scn1b deletion leads to increased tetrodotoxinâ sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine hearts." The Journal of Physiology 593(6): 1389-1407.en_US
dc.identifier.issn0022-3751en_US
dc.identifier.issn1469-7793en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110823
dc.description.abstractNa+ current (INa) is determined not only by the properties of the pore‐forming voltage‐gated Na+ channel (VGSC) α subunit, but also by the integrated function of a molecular aggregate (the VGSC complex) that includes the VGSC β subunit family. Mutations or rare variants in Scn1b (encoding the β1 and β1B subunits) have been associated with various inherited arrhythmogenic syndromes, including cases of Brugada syndrome and sudden unexpected death in patients with epilepsy. Here, we have used Scn1b null mouse models to understand better the relation between Scn1b expression, and cardiac electrical function. Using a combination of macropatch and scanning ion conductance microscopy we show that loss of Scn1b in juvenile null animals resulted in increased tetrodotoxin‐sensitive INa but only in the cell midsection, even before full T‐tubule formation; the latter occurred concurrent with increased message abundance for the neuronal Scn3a mRNA, suggesting increased abundance of tetrodotoxin‐sensitive NaV1.3 protein and yet its exclusion from the region of the intercalated disc. Ventricular myocytes from cardiac‐specific adult Scn1b null animals showed increased Scn3a message, prolonged action potential repolarization, presence of delayed after‐depolarizations and triggered beats, delayed Ca2+ transients and frequent spontaneous Ca2+ release events and at the whole heart level, increased susceptibility to polymorphic ventricular arrhythmias. Most alterations in Ca2+ homeostasis were prevented by 100 nm tetrodotoxin. Our results suggest that life‐threatening arrhythmias in patients with mutations in Scn1b, a gene classically defined as ancillary to the Na+ channel α subunit, can be partly consequent to disrupted intracellular Ca2+ homeostasis in ventricular myocytes.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleScn1b deletion leads to increased tetrodotoxin‐sensitive sodium current, altered intracellular calcium homeostasis and arrhythmias in murine heartsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110823/1/tjp6322.pdf
dc.identifier.doi10.1113/jphysiol.2014.277699en_US
dc.identifier.sourceThe Journal of Physiologyen_US
dc.identifier.citedreferenceRamirez RJ, Sah R, Liu J, Rose RA & Backx PH ( 2011 ). Intracellular [Na + ] modulates synergy between Na + /Ca 2 + exchanger and L‐type Ca 2 + current in cardiac excitation–contraction coupling during action potentials. Basic Res Cardiol 106, 967 – 977.en_US
dc.identifier.citedreferenceNoujaim SF, Auerbach DS & Jalife J ( 2007a ). Ventricular fibrillation: dynamics and ion channel determinants. Circ J 71 ( Suppl A ), A1 – 11.en_US
dc.identifier.citedreferenceNoujaim SF, Pandit SV, Berenfeld O, Vikstrom K, Cerrone M, Mironov S, Zugermayr M, Lopatin AN & Jalife J ( 2007b ). Up‐regulation of the inward rectifier K + current ( I K1 ) in the mouse heart accelerates and stabilizes rotors. J Physiol 578, 315 – 326.en_US
dc.identifier.citedreferenceNoujaim SF, Kaur K, Milstein M, Jones JM, Furspan P, Jiang D, Auerbach DS, Herron T, Meisler MH & Jalife J ( 2012 ). A null mutation of the neuronal sodium channel Na V 1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J 26, 63 – 72.en_US
dc.identifier.citedreferenceOakley JC, Kalume F & Catterall WA ( 2011 ). Insights into pathophysiology and therapy from a mouse model of Dravet syndrome. Epilepsia 52 ( Suppl 2 ), 59 – 61.en_US
dc.identifier.citedreferencePatino GA, Claes LR, Lopez‐Santiago LF, Slat EA, Dondeti RS, Chen C, O'Malley HA, Gray CB, Miyazaki H, Nukina N, Oyama F, De Jonghe P & Isom LL ( 2009 ). A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 29, 10764 – 10778.en_US
dc.identifier.citedreferencePetitprez S, Zmoos AF, Ogrodnik J, Balse E, Raad N, El‐Haou S, Albesa M, Bittihn P, Luther S, Lehnart SE, Hatem SN, Coulombe A & Abriel H ( 2011 ). SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Na v 1.5 in cardiomyocytes. Circ Res 108, 294 – 304.en_US
dc.identifier.citedreferenceRiuro H, Campuzano O, Arbelo E, Iglesias A, Batlle M, Perez‐Villa F, Brugada J, Perez GJ, Scornik FS & Brugada R ( 2014 ). A missense mutation in the sodium channel beta1b subunit reveals SCN1B as a susceptibility gene underlying LQT Syndrome. Heart Rhythm.en_US
dc.identifier.citedreferenceRodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF & Dymecki SM ( 2000 ). High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat Genet 25, 139 – 140.en_US
dc.identifier.citedreferenceSakauchi M, Oguni H, Kato I, Osawa M, Hirose S, Kaneko S, Takahashi Y, Takayama R & Fujiwara T ( 2011 ). Retrospective multiinstitutional study of the prevalence of early death in Dravet syndrome. Epilepsia 52, 1144 – 1149.en_US
dc.identifier.citedreferenceSato PY, Coombs W, Lin X, Nekrasova O, Green KJ, Isom LL, Taffet SM & Delmar M ( 2011 ). Interactions between ankyrin‐G, Plakophilin‐2, and Connexin43 at the cardiac intercalated disc. Circ Res 109, 193 – 201.en_US
dc.identifier.citedreferenceSchuele SU, Bermeo AC, Alexopoulos AV, Locatelli ER, Burgess RC, Dinner DS & Foldvary‐Schaefer N ( 2007a ). Video‐electrographic and clinical features in patients with ictal asystole. Neurology 69, 434 – 441.en_US
dc.identifier.citedreferenceSchuele SU, Widdess‐Walsh P, Bermeo A & Luders HO ( 2007b ). Sudden unexplained death in epilepsy: the role of the heart. Cleve Clin J Med 74 ( Suppl 1 ), S121 – 127.en_US
dc.identifier.citedreferenceScriven DR, Dan P & Moore ED ( 2000 ). Distribution of proteins implicated in excitation‐contraction coupling in rat ventricular myocytes. Biophys J 79, 2682 – 2691.en_US
dc.identifier.citedreferenceShorvon S & Tomson T ( 2011 ). Sudden unexpected death in epilepsy. Lancet 378, 2028 – 2038.en_US
dc.identifier.citedreferenceSurges R, Thijs RD, Tan HL & Sander JW ( 2009 ). Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol 5, 492 – 504.en_US
dc.identifier.citedreferenceSurges R, Adjei P, Kallis C, Erhuero J, Scott CA, Bell GS, Sander JW & Walker MC ( 2010 ). Pathologic cardiac repolarization in pharmacoresistant epilepsy and its potential role in sudden unexpected death in epilepsy: a case‐control study. Epilepsia 51, 233 – 242.en_US
dc.identifier.citedreferenceThomas MJ, Sjaastad I, Andersen K, Helm PJ, Wasserstrom JA, Sejersted OM & Ottersen OP ( 2003 ). Localization and function of the Na + /Ca 2 + ‐exchanger in normal and detubulated rat cardiomyocytes. J Mol Cell Cardiol 35, 1325 – 1337.en_US
dc.identifier.citedreferenceVaidya D, Morley GE, Samie FH & Jalife J ( 1999 ). Reentry and fibrillation in the mouse heart. A challenge to the critical mass hypothesis. Circ Res 85, 174 – 181.en_US
dc.identifier.citedreferenceVerdonck F, Mubagwa K & Sipido KR ( 2004 ). [Na + ] in the subsarcolemmal ‘fuzzy’ space and modulation of [Ca 2 + ] i and contraction in cardiac myocytes. Cell Calcium 35, 603 – 612.en_US
dc.identifier.citedreferenceWaxman SG ( 2006 ). Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci 7, 932 – 941.en_US
dc.identifier.citedreferenceWestenbroek RE, Bischoff S, Fu Y, Maier SK, Catterall WA & Scheuer T ( 2013 ). Localization of sodium channel subtypes in mouse ventricular myocytes using quantitative immunocytochemistry. J Mol Cell Cardiol 64, 69 – 78.en_US
dc.identifier.citedreferenceWong HK, Sakurai T, Oyama F, Kaneko K, Wada K, Miyazaki H, Kurosawa M, De Strooper B, Saftig P & Nukina N ( 2005 ). beta Subunits of voltage‐gated sodium channels are novel substrates of beta‐site amyloid precursor protein‐cleaving enzyme (BACE1) and gamma‐secretase. J Biol Chem 280, 23009 – 23017.en_US
dc.identifier.citedreferenceZarzoso M, Rysevaite K, Milstein ML, Calvo CJ, Kean AC, Atienza F, Pauza DH, Jalife J & Noujaim SF ( 2013 ). Nerves projecting from the intrinsic cardiac ganglia of the pulmonary veins modulate sinoatrial node pacemaker function. Cardiovasc Res 99, 566 – 575.en_US
dc.identifier.citedreferenceZaza A, Belardinelli L & Shryock JC ( 2008 ). Pathophysiology and pharmacology of the cardiac ‘late sodium current ’. Pharmacol Ther 119, 326 – 339.en_US
dc.identifier.citedreferenceAgullo‐Pascual E, Cerrone M & Delmar M ( 2014 ). Arrhythmogenic cardiomyopathy and Brugada syndrome: Diseases of the connexome. FEBS Lett 588, 1322 – 1330.en_US
dc.identifier.citedreferenceAuerbach DS, Jones J, Clawson BC, Offord J, Lenk GM, Ogiwara I, Yamakawa K, Meisler MH, Parent JM & Isom LL ( 2013 ). Altered cardiac electrophysiology and SUDEP in a model of Dravet syndrome. PLoS One 8, e77843.en_US
dc.identifier.citedreferenceBhargava A, Lin X, Novak P, Mehta K, Korchev Y, Delmar M & Gorelik J ( 2013 ). Super‐resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112, 1112 – 1120.en_US
dc.identifier.citedreferenceBrackenbury WJ, Yuan Y, O'Malley HA, Parent JM & Isom LL ( 2013 ). Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b‐null mice and precedes hyperexcitability. Proc Natl Acad Sci U S A 110, 1089 – 1094.en_US
dc.identifier.citedreferenceBrette F & Orchard CH ( 2006 ). Density and sub‐cellular distribution of cardiac and neuronal sodium channel isoforms in rat ventricular myocytes. Biochem Biophys Res Commun 348, 1163 – 1166.en_US
dc.identifier.citedreferenceCerrone M & Delmar M ( 2014 ). Desmosomes and the sodium channel complex: Implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med 24, 184 – 190.en_US
dc.identifier.citedreferenceCerrone M, Lin X, Zhang M, Agullo‐Pascual E, Pfenniger A, Chkourko Gusky H, Novelli V, Kim C, Tirasawadichai T, Judge DP, Rothenberg E, Chen HS, Napolitano C, Priori SG & Delmar M ( 2014 ). Missense mutations in plakophilin‐2 cause sodium current deficit and associate with a brugada syndrome phenotype. Circulation 129, 1092 – 1103.en_US
dc.identifier.citedreferenceChen C, Westenbroek RE, Xu X, Edwards CA, Sorenson DR, Chen Y, McEwen DP, O'Malley HA, Bharucha V, Meadows LS, Knudsen GA, Vilaythong A, Noebels JL, Saunders TL, Scheuer T, Shrager P, Catterall WA & Isom LL ( 2004 ). Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture. J Neurosci 24, 4030 – 4042.en_US
dc.identifier.citedreferenceChen C, Dickendesher TL, Oyama F, Miyazaki H, Nukina N & Isom LL ( 2007 ). Floxed allele for conditional inactivation of the voltage‐gated sodium channel beta1 subunit Scn1b. Genesis 45, 547 – 553.en_US
dc.identifier.citedreferenceDespa S, Islam MA, Weber CR, Pogwizd SM & Bers DM ( 2002 ). Intracellular Na + concentration is elevated in heart failure but Na/K pump function is unchanged. Circulation 105, 2543 – 2548.en_US
dc.identifier.citedreferenceDespa S, Shui B, Bossuyt J, Lang D, Kotlikoff MI & Bers DM ( 2014 ). Junctional cleft [Ca 2+ ] i measurements using novel cleft‐targeted Ca 2 + sensors. Circ Res 115, 339 – 347.en_US
dc.identifier.citedreferenceDesplantez T, McCain ML, Beauchamp P, Rigoli G, Rothen‐Rutishauser B, Parker KK & Kleber AG ( 2012 ). Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res 94, 58 – 65.en_US
dc.identifier.citedreferenceDravet C ( 2011 ). The core Dravet syndrome phenotype. Epilepsia 52 ( Suppl 2 ), 3 – 9.en_US
dc.identifier.citedreferenceDravet C, Bureau M, Oguni H, Fukuyama Y & Cokar O ( 2005 ). Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 95, 71 – 102.en_US
dc.identifier.citedreferenceDuclohier H ( 2005 ). Neuronal sodium channels in ventricular heart cells are localized near T‐tubules openings. Biochem Biophys Res Commun 334, 1135 – 1140.en_US
dc.identifier.citedreferenceGenton P, Velizarova R & Dravet C ( 2011 ). Dravet syndrome: the long‐term outcome. Epilepsia 52 ( Suppl 2 ), 44 – 49.en_US
dc.identifier.citedreferenceGershome C, Lin E, Kashihara H, Hove‐Madsen L & Tibbits GF ( 2011 ). Colocalization of voltage‐gated Na + channels with the Na + /Ca 2+ exchanger in rabbit cardiomyocytes during development. Am J Physiol Heart Circ Physiol 300, H300 – H311.en_US
dc.identifier.citedreferenceGlukhov AV, Fedorov VV, Anderson ME, Mohler PJ & Efimov IR ( 2010 ). Functional anatomy of the murine sinus node: high‐resolution optical mapping of ankyrin‐B heterozygous mice. Am J Physiol Heart Circ Physiol 299, H482 – 491.en_US
dc.identifier.citedreferenceGoldman AM, Glasscock E, Yoo J, Chen TT, Klassen TL & Noebels JL ( 2009 ). Arrhythmia in heart and brain: KCNQ1 mutations link epilepsy and sudden unexplained death. Sci Transl Med 1, 2ra6.en_US
dc.identifier.citedreferenceGray RA, Jalife J, Panfilov A, Baxter WT, Cabo C, Davidenko JM & Pertsov AM ( 1995 ). Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation 91, 2454 – 2469.en_US
dc.identifier.citedreferenceGuerrini R & Aicardi J ( 2003 ). Epileptic encephalopathies with myoclonic seizures in infants and children (severe myoclonic epilepsy and myoclonic‐astatic epilepsy). J Clin Neurophysiol 20, 449 – 461.en_US
dc.identifier.citedreferenceHaddock PS, Coetzee WA, Cho E, Porter L, Katoh H, Bers DM, Jafri MS & Artman M ( 1999 ). Subcellular [Ca2 + ]i gradients during excitation‐contraction coupling in newborn rabbit ventricular myocytes. Circ Res 85, 415 – 427.en_US
dc.identifier.citedreferenceHirsch LJ, Donner EJ, So EL, Jacobs M, Nashef L, Noebels JL & Buchhalter JR ( 2011 ). Abbreviated report of the NIH/NINDS workshop on sudden unexpected death in epilepsy. Neurology 76, 1932 – 1938.en_US
dc.identifier.citedreferenceHu D, Barajas‐Martinez H, Medeiros‐Domingo A, Crotti L, Veltmann C, Schimpf R, Urrutia J, Alday A, Casis O, Pfeiffer R, Burashnikov E, Caceres G, Tester DJ, Wolpert C, Borggrefe M, Schwartz P, Ackerman MJ & Antzelevitch C ( 2012 ). A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na v 1.5 and K v 4.3 channel currents. Heart Rhythm 9, 760 – 769.en_US
dc.identifier.citedreferenceIsom LL, Scheuer T, Brownstein AB, Ragsdale DS, Murphy BJ & Catterall WA ( 1995 ). Functional co‐expression of the β1 and type IIA α subunits of sodium channels in a mammalian cell line. J Biol Chem 270, 3306 – 3312.en_US
dc.identifier.citedreferenceJansen JA, Noorman M, Musa H, Stein M, de Jong S, van der Nagel R, Hund TJ, Mohler PJ, Vos MA, van Veen TA, de Bakker JM, Delmar M & van Rijen HV ( 2012 ). Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9, 600 – 607.en_US
dc.identifier.citedreferenceKim DY, Carey BW, Wang H, Ingano LA, Binshtok AM, Wertz MH, Pettingell WH, He P, Lee VM, Woolf CJ & Kovacs DM ( 2007 ). BACE1 regulates voltage‐gated sodium channels and neuronal activity. Nat Cell Biol 9, 755 – 764.en_US
dc.identifier.citedreferenceLeblanc N & Hume JR ( 1990 ). Sodium current‐induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372 – 376.en_US
dc.identifier.citedreferenceLederer WJ, Niggli E & Hadley RW ( 1990 ). Sodium‐calcium exchange in excitable cells: fuzzy space. Science 248, 283.en_US
dc.identifier.citedreferenceLin X, Liu N, Lu J, Zhang J, Anumonwo JM, Isom LL, Fishman GI & Delmar M ( 2011 ). Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm 8, 1923 – 1930.en_US
dc.identifier.citedreferenceLopez‐Santiago LF, Meadows LS, Ernst SJ, Chen C, Malhotra JD, McEwen DP, Speelman A, Noebels JL, Maier SK, Lopatin AN & Isom LL ( 2007 ). Sodium channel Scn1b null mice exhibit prolonged QT and RR intervals. J Mol Cell Cardiol 43, 636 – 647.en_US
dc.identifier.citedreferenceLübkemeier I, Requardt RP, Lin X, Sasse P, Andrie R, Schrickel JW, Chkourko H, Bukauskas FF, Kim JS, Frank M, Malan D, Zhang J, Wirth A, Dobrowolski R, Mohler PJ, Offermanns S, Fleischmann BK, Delmar M & Willecke K ( 2013 ). Deletion of the last five C‐terminal amino acid residues of connexin43 leads to lethal ventricular arrhythmias in mice without affecting coupling via gap junction channels. Basic Res Cardiol 108, 348 – 364.en_US
dc.identifier.citedreferenceMaier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T & Catterall WA ( 2004 ). Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109, 1421 – 1427.en_US
dc.identifier.citedreferenceMalhotra JD, Kazen‐Gillespie K, Hortsch M & Isom LL ( 2000 ). Sodium channel β subunits mediate homophilic cell adhesion and recruit ankyrin to points of cell‐cell contact. J Biol Chem 275, 11383 – 11388.en_US
dc.identifier.citedreferenceMalhotra JD, Koopmann MC, Kazen‐Gillespie KA, Fettman N, Hortsch M & Isom LL ( 2002 ). Structural requirements for interaction of sodium channel beta 1 subunits with ankyrin. J Biol Chem 277, 26681 – 26688.en_US
dc.identifier.citedreferenceMarionneau C, Carrasquillo Y, Norris AJ, Townsend RR, Isom LL, Link AJ & Nerbonne JM ( 2012 ). The sodium channel accessory subunit Navbeta1 regulates neuronal excitability through modulation of repolarizing voltage‐gated K + channels. J Neurosci 32, 5716 – 5727.en_US
dc.identifier.citedreferenceMilstein ML, Musa H, Balbuena DP, Anumonwo JM, Auerbach DS, Furspan PB, Hou L, Hu B, Schumacher SM, Vaidyanathan R, Martens JR & Jalife J ( 2012 ). Dynamic reciprocity of sodium and potassium channel expression in a macromolecular complex controls cardiac excitability and arrhythmia. Proc Natl Acad Sci U S A 109, E2134 – 2143.en_US
dc.identifier.citedreferenceMironov SF, Vetter FJ & Pertsov AM ( 2006 ). Fluorescence imaging of cardiac propagation: spectral properties and filtering of optical action potentials. Am J Physiol Heart Circ Physiol 291, H327 – 335.en_US
dc.identifier.citedreferenceMohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K, Priori SG, Keating MT & Bennett V ( 2004 ). A cardiac arrhythmia syndrome caused by loss of ankyrin‐B function. Proc Natl Acad Sci U S A 101, 9137 – 9142.en_US
dc.identifier.citedreferenceMohler PJ, Davis JQ & Bennett V ( 2005 ). Ankyrin‐B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP 3 receptor in a cardiac T‐tubule/SR microdomain. PLoS Biol 3, e423.en_US
dc.identifier.citedreferenceMorley GE & Jalife J ( 2000 ). Cardiac gap junction remodeling by stretch: is it a good thing ? Circ Res 87, 272 – 274.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.