Show simple item record

Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere

dc.contributor.authorBougher, S. W.en_US
dc.contributor.authorPawlowski, D.en_US
dc.contributor.authorBell, J. M.en_US
dc.contributor.authorNelli, S.en_US
dc.contributor.authorMcDunn, T.en_US
dc.contributor.authorMurphy, J. R.en_US
dc.contributor.authorChizek, M.en_US
dc.contributor.authorRidley, A.en_US
dc.date.accessioned2015-04-02T15:12:13Z
dc.date.available2016-03-02T19:36:55Zen
dc.date.issued2015-02en_US
dc.identifier.citationBougher, S. W.; Pawlowski, D.; Bell, J. M.; Nelli, S.; McDunn, T.; Murphy, J. R.; Chizek, M.; Ridley, A. (2015). "Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere." Journal of Geophysical Research: Planets 120(2): 311-342.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110830
dc.description.abstractA new Mars Global Ionosphere‐Thermosphere Model (M‐GITM) is presented that combines the terrestrial GITM framework with Mars fundamental physical parameters, ion‐neutral chemistry, and key radiative processes in order to capture the basic observed features of the thermal, compositional, and dynamical structure of the Mars atmosphere from the ground to the exosphere (0–250 km). Lower, middle, and upper atmosphere processes are included, based in part upon formulations used in previous lower and upper atmosphere Mars GCMs. This enables the M‐GITM code to be run for various seasonal, solar cycle, and dust conditions. M‐GITM validation studies have focused upon simulations for a range of solar and seasonal conditions. Key upper atmosphere measurements are selected for comparison to corresponding M‐GITM neutral temperatures and neutral‐ion densities. In addition, simulated lower atmosphere temperatures are compared with observations in order to provide a first‐order confirmation of a realistic lower atmosphere. M‐GITM captures solar cycle and seasonal trends in the upper atmosphere that are consistent with observations, yielding significant periodic changes in the temperature structure, the species density distributions, and the large‐scale global wind system. For instance, mid afternoon temperatures near ∼200 km are predicted to vary from ∼210 to 350 K (equinox) and ∼190 to 390 k (aphelion to perihelion) over the solar cycle. These simulations will serve as a benchmark against which to compare episodic variations (e.g., due to solar flares and dust storms) in future M‐GITM studies. Additionally, M‐GITM will be used to support MAVEN mission activities (2014–2016).Key PointsThe Mars Global Ionosphere‐Thermosphere Model (MGITM) is presented and validatedMGITM captures solar cycle, seasonal, and diurnal trends observed above 100 kmMGITM variations will be compared to key episodic variations in future studiesen_US
dc.publisherAerospaceen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMarsen_US
dc.subject.othergeneral circulation modelen_US
dc.subject.otheraeronomyen_US
dc.subject.otherupper atmosphereen_US
dc.titleMars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110830/1/jgre20354.pdf
dc.identifier.doi10.1002/2014JE004715en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferencePawlowski, D. J., S. W. Bougher, A. J. Ridley, and J. Murphy ( 2012 ), Modeling the Martian upper atmosphere using the Mars Global Ionosphere‐Thermosphere Model (Invited)”, in Fall AGU.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceSeiff, A., and D. B. Kirk ( 1977 ), Structure of the atmosphere of Mars in summer at mid‐latitudes, J. Geophys. Res., 82 ( 28 ), 4364 – 4378.en_US
dc.identifier.citedreferenceSmith, D. E., and M. T. Zuber ( 1996 ), The Shape of Mars and the topographic signature of the hemispheric dichotomy, in Lunar and Planetary Institute Science Conference Abstracts, Lunar and Planetary Institute Science Conference Abstracts, vol. 27, pp. 1221, Lunar Planet. Inst., Houston, Tex.en_US
dc.identifier.citedreferenceSmith, M. D. ( 2004 ), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148 – 165, doi: 10.1016/j.icarus.2003.09.010.en_US
dc.identifier.citedreferenceSmith, M. D. ( 2009 ), THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202, 444 – 452, doi: 10.1016/j.icarus.2009.03.027.en_US
dc.identifier.citedreferenceStewart, A. I. ( 1972 ), Mariner 6 and 7 ultraviolet spectrometer experiment: Implications for CO 2 +, CO and O airglow, J. Geophys. Res., 77 ( 1 ), 54 – 68.en_US
dc.identifier.citedreferenceStewart, A. I., C. Barth, C. Hord, and A. Lane ( 1972 ), Mariner 9 ultraviolet spectrometer experiment: Structure of Mars' upper atmosphere, Icarus, 17 ( 2 ), 469 – 474.en_US
dc.identifier.citedreferenceStewart, A. I. F. ( 1987 ), Revised time dependent model of the Martian atmosphere for use in orbit lifetime and sustenance studies, LASP‐JPL Internal Rep., NQ‐802429, Jet Propul. Lab., Pasadena, Calif.en_US
dc.identifier.citedreferenceStiepen, A., J.‐C. Gerard, S.‐W. Bougher, and F. Montmessin ( 2014 ), Martian thermosphere scale height from SPICAM dayglow measurements, European Planetary Science Conference Abstracts, 9, 416.en_US
dc.identifier.citedreferenceTolson, R., G. Keating, G. Cancro, J. Parker, S. Noll, and B. Wilkerson ( 1999 ), Application of accelerometer data to Mars global surveyor aerobraking operations, J. Spacecraft Rockets, 36 ( 3 ), 323 – 329.en_US
dc.identifier.citedreferenceTolson, R., A. Dwyer, J. Hanna, G. Keating, B. George, P. Escalera, and M. Werner ( 2005 ), Application of accelerometer data to Mars Odyssey aerobraking and atmospheric modeling, J. Spacecraft Rockets, 42 ( 3 ), 435 – 443.en_US
dc.identifier.citedreferenceTolson, R., G. Keating, R. Zurek, S. Bougher, C. Justus, and D. Fritts ( 2007 ), Application of acclerometer data to atmospheric modeling during Mars aerobraking operations, J. Spacecraft Rockets, 44 ( 6 ), 1172 – 1179.en_US
dc.identifier.citedreferenceTolson, R. H., et al. ( 2008 ), Atmospheric modeling using accelerometer data during Mars Reconnaissance Orbiter aerobraking operations, J. Spacecraft Rockets, 45 ( 3 ), 511 – 518.en_US
dc.identifier.citedreferenceToon, O. B., C. McKay, T. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16,287 – 16,301.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceVasavada, A., et al. ( 2012 ), Assessment of environments for Mars science laboratory entry, descent, and surface operations, Space Sci. Rev., 170 ( 1‐4 ), 793 – 835, doi: 10.1007/s11214-012-9911-3.en_US
dc.identifier.citedreferenceVenkateswara Rao, N., N. Balan, and A. K. Patra ( 2014 ), Solar rotation effects on the Martian ionosphere, J. Geophys. Res. Space Physics, 119, 6612 – 6622, doi: 10.1002/2014JA019894.en_US
dc.identifier.citedreferenceWilson, R. J. ( 2002 ), Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars global surveyor accelerometer experiment, Geophys. Res. Lett., 29 ( 7 ), 1120, doi: 10.1029/2001GL013975.en_US
dc.identifier.citedreferenceWithers, P. ( 2009 ), A review of observed variability in the dayside ionosphere of Mars, Adv. Space Res., 44, 277 – 307, doi: 10.1016/j.asr.2009.04.027.en_US
dc.identifier.citedreferenceWithers, P., S. W. Bougher, and G. M. Keating ( 2003 ), The effects of topographically‐controlled thermal tides in the Martian upper atmosphere as seen by the MGS accelerometer, Icarus, 164, 14 – 32, doi: 10.1016/S0019-1035(03)00135-0.en_US
dc.identifier.citedreferenceWithers, P., M. Mendillo, and D. Hinson ( 2006 ), Space weather effects on the Mars ionosphere due to solar flares and meteors, in European Planetary Science Congress 2006, 190, Copernicus Meetings, Gottingen, Germany.en_US
dc.identifier.citedreferenceWithers, P., M. Matta, and M. Mendillo ( 2010 ), The unusual electrodynamics of the ionosphere of Mars, in European Planetary Science Congress 2010, 68, Copernicus Meetings, Gottingen, Germany.en_US
dc.identifier.citedreferenceWoods, T. N., and G. J. Rottman ( 2002 ), Solar ultraviolet variability over time periods of aeronomic interest, in Atmospheres in the Solar System: Comparative Aeronomy, Geophys. Monogr. Ser., vol. 130, edited by M. Mendillo, A. Nagy, and J. H. Waite, pp. 221, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceWoods, T. N., F. G. Eparvier, S. M. Bailey, P. C. Chamberlin, J. Lean, G. J. Rottman, S. C. Solomon, W. K. Tobiska, and D. L. Woodraska ( 2005 ), Solar EUV experiment (SEE): Mission overview and first results, J. Geophys. Res., 110, A01312, doi: 10.1029/2004JA010765.en_US
dc.identifier.citedreferenceWoods, T. N., et al. ( 2010 ), Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of science objectives, instrument design, data products, and model developments, Sol. Phys., 275, 115 – 143, doi: 10.1007/s11207-009-9487-6.en_US
dc.identifier.citedreferenceZhang, M., J. Luhmann, and A. Kliore ( 1990 ), An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods, J. Geophys. Res., 95 ( A10 ), 17,095 – 17,102.en_US
dc.identifier.citedreferenceAngelats i Coll, M., F. Forget, M. A. López‐Valverde, and F. González‐Galindo ( 2005 ), The first Mars thermospheric general circulation model: The Martian atmosphere from the ground to 240 km, Geophys. Res. Lett., 32, L04201, doi: 10.1029/2004GL021368.en_US
dc.identifier.citedreferenceArkani‐Hamed, J. ( 2002 ), An improved 50‐degree spherical harmonic model of the magnetic field of Mars derived from both high‐altitude and low‐altitude data, J. Geophys. Res., 107 ( E10 ), 5083, doi: 10.1029/2001JE001835.en_US
dc.identifier.citedreferenceBaird, D. T., R. Tolson, S. Bougher, and B. Steers ( 2007 ), Zonal wind calculations from Mars global surveyor accelerometer and rate data, J. Spacecraft Rockets, 44, 1180 – 1187, doi: 10.2514/1.28588.en_US
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy, vol. 1, Aerospace, U. K.en_US
dc.identifier.citedreferenceBaumgaertner, A. J., R. Neely III, G. Lucas, and J. Thayer ( 2013 ), Towards a comprehensive global electric circuit model: Conductivity and its variability in WACCM model simulations, in EGU General Assembly Conference Abstracts, vol. 15, pp. 6670, Copernicus Meetings, Gottingen, Germany.en_US
dc.identifier.citedreferenceBell, J. M., S. W. Bougher, and J. R. Murphy ( 2007 ), Vertical dust mixing and the interannual variations in the Mars thermosphere, J. Geophys. Res., 112, E12002, doi: 10.1029/2006JE002856.en_US
dc.identifier.citedreferenceBell, J. M., J. Westlake, and J. H. Waite, Jr. ( 2011a ), Simulating the time‐dependent response of Titan's upper atmosphere to periods of magnetospheric forcing, Geophys. Res. Lett., 38, L06202, doi: 10.1029/2010GL046420.en_US
dc.identifier.citedreferenceBell, J. M., J. H. Waite, Jr., J. Westlake, S. W. Bougher, A. J. Ridley, R. Perryman, and K. E. Mandt ( 2014 ), Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape, J. Geophys. Res. Space Physics, 119, 4957 – 4972, doi: 10.1002/2014JA019781.en_US
dc.identifier.citedreferenceBell, J. M., et al. ( 2011b ), Simulating the one‐dimensional structure of Titan's upper atmosphere: 3. Mechanisms determining methane escape, J. Geophys. Res., 116, E11002, doi: 10.1029/2010JE003639.en_US
dc.identifier.citedreferenceBougher, S., and D. Huestis ( 2010 ), Solar cycle variation of Mars exospheric temperatures: Critical review of available dayside measurements and recent model simulations, in 38th COSPAR Scientific Assembly, vol. 38, pp. 1410, Copernicus Meetings, Gottingen, Germany.en_US
dc.identifier.citedreferenceBougher, S., G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, and R. T. Clancy ( 1999a ), Mars global surveyor aerobraking: Atmospheric trends and model interpretation, Adv. Space Res., 23, 1887 – 1897, doi: 10.1016/S0273-1177(99)00272-0.en_US
dc.identifier.citedreferenceFox, J. L. ( 2004 ), Response of the Martian thermosphere/ionosphere to enhanced fluxes of solar soft X‐rays, J. Geophys. Res., 109, A11310, doi: 10.1029/2004JA010380.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 1999b ), Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 16,591 – 16,611, doi: 10.1029/1998JE001019.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Roble, and B. Foster ( 2000 ), Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices, J. Geophys. Res., 105, 17,669 – 17,692, doi: 10.1029/1999JE001232.en_US
dc.identifier.citedreferenceBougher, S. W., R. G. Roble, and T. Fuller‐Rowell ( 2002 ), Simulations of the upper atmospheres of the terrestrial planets, Geophys. Monogr. Ser., 130, 261 – 288.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. Hinson, and J. Murphy ( 2004 ), MGS radio science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.en_US
dc.identifier.citedreferenceBougher, S. W., J. M. Bell, J. R. Murphy, M. A. Lopez‐Valverde, and P. G. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059.en_US
dc.identifier.citedreferenceBougher, S. W., P.‐L. Blelly, M. Combi, J. L. Fox, I. Mueller‐Wodarg, A. Ridley, and R. G. Roble ( 2008 ), Neutral upper atmosphere and ionosphere modeling, Space Sci. Rev., 139, 107 – 141, doi: 10.1007/s11214-008-9401-9.en_US
dc.identifier.citedreferenceBougher, S. W., T. M. McDunn, K. A. Zoldak, and J. M. Forbes ( 2009 ), Solar cycle variability of Mars dayside exospheric temperatures: Model evaluation of underlying thermal balances, Geophys. Res. Lett., 36, L05201, doi: 10.1029/2008GL036376.en_US
dc.identifier.citedreferenceBougher, S. W., D. J. Pawlowski, and J. Murphy ( 2011a ), Towards and understanding of the time dependent responses of the Martian upper atmosphere to dust events, Abstract P23E‐08 presented at 2011 Fall Meeting, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceBougher, S. W., A. Ridley, D. Pawlowski, J. M. Bell, and S. Nelli ( 2011b ), Development and validation of the ground‐to‐exosphere Mars GITM code: Solar cycle and seasonal variations of the upper atmosphere, in Mars Atmosphere: Modelling and Observation, edited by F. Forget and E. Millour, pp. 379 – 381.en_US
dc.identifier.citedreferenceBougher, S. W., D. J. Pawlowski, and J. R. Murphy ( 2014 ), Time dependent responses of the Martian upper atmosphere to the 2001 global dust storm using Mars GITM simulations, in AAS/Division for Planetary Sciences Meeting Abstracts, vol. 46, Am. Astron. Soc., Washington, D. C.en_US
dc.identifier.citedreferenceBougher, S. W., D. A. Brain, J. L. Fox, F. González‐Galindo, C. Simon‐Wedlund, and P. G. Withers ( 2014a ), Upper atmosphere and ionosphere, in Mars II, edited by B. Haberle et al., Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceBougher, S. W., T. E. Cravens, J. Grebowksy, and J. Luhmann ( 2014b ), The aeronomy of Mars: Characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape, Space Sci. Rev., doi: 10.1007/s11214-014-0053-7.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare Irradiance Spectral Model (FISM): Daily component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.en_US
dc.identifier.citedreferenceChassefière, E., and F. Leblanc ( 2004 ), Mars atmospheric escape and evolution; interaction with the solar wind, Planet. Space Sci., 52, 1039 – 1058, doi: 10.1016/j.pss.2004.07.002.en_US
dc.identifier.citedreferenceChaufray, J.‐Y., F. Gonzalez‐Galindo, F. Forget, M. Lopez‐Valverde, F. Leblanc, R. Modolo, S. Hess, M. Yagi, P.‐L. Blelly, and O. Witasse ( 2014 ), Three‐dimensional Martian ionosphere model: II. Effect of transport processes due to pressure gradients, J. Geophys. Res. Planets, 119, 1614 – 1636, doi: 10.1002/2013JE004551.en_US
dc.identifier.citedreferenceColegrove, F., F. Johnson, and W. Hanson ( 1966 ), Atmospheric composition in the lower thermosphere, J. Geophys. Res., 71, 2227 – 2236.en_US
dc.identifier.citedreferenceConrath, B. J. ( 1975 ), Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971, Icarus, 24 ( 1 ), 36 – 46.en_US
dc.identifier.citedreferenceDeng, Y., A. J. Ridley, and W. Wang ( 2008 ), Effect of the altitudinal variation of the gravitational acceleration on the thermosphere simulation, J. Geophys. Res., 113, A09302, doi: 10.1029/2008JA013081.en_US
dc.identifier.citedreferenceDowling, T., A. Fischer, P. Gierasch, J. Harrington, R. LeBeau, and C. Santori ( 1998 ), The Explicit Planetary Isentropic‐Coordinate (EPIC) atmospheric model, Icarus, 132 ( 2 ), 221 – 238.en_US
dc.identifier.citedreferenceFang, X., S. W. Bougher, R. E. Johnson, M. W. Ma, and Y. Liemohn ( 2013 ), The importance of pickup oxygen ion precipitation to the Mars upper atmosphere under extreme solar wind conditions, Geophys. Res. Lett., 40, 1922 – 1927, doi: 10.1002/grl.50415.en_US
dc.identifier.citedreferenceForbes, J. M., X. Zhang, E. R. Talaat, and W. Ward ( 2003 ), Nonmigrating diurnal tides in the thermosphere, J. Geophys. Res., 108 ( A1 ), 1033, doi: 10.1029/2002JA009262.en_US
dc.identifier.citedreferenceForbes, J. M., F. G. Lemoine, S. L. Bruinsma, M. D. Smith, and X. Zhang ( 2008 ), Solar flux variability of Mars' exosphere densities and temperatures, Geophys. Res. Lett., 35, L01201, doi: 10.1029/2007GL031904.en_US
dc.identifier.citedreferenceForget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. R. Lewis, P. L. Read, and J.‐P. Huot ( 1999 ), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 24,155 – 24,176, doi: 10.1029/1999JE001025.en_US
dc.identifier.citedreferenceForget, F., F. Montmessin, J.‐L. Bertaux, F. González‐Galindo, S. Lebonnois, E. Quermerais, A. Reberac, E. Dimarellis, and M. A. Lopez‐Valverde ( 2009 ), Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM, J. Geophys. Res., 114, E01004, doi: 10.1029/2008JE003086.en_US
dc.identifier.citedreferenceFox, J. L., and K. Y. Sung ( 2001 ), Solar activity variations of the Venus thermosphere/ionosphere, J. Geophys. Res., 106, 21,305 – 21,336, doi: 10.1029/2001JA000069.en_US
dc.identifier.citedreferenceFox, J. L., and K. E. Yeager ( 2009 ), MGS electron density profiles: Analysis of the peak magnitudes, Icarus, 200, 468 – 479, doi: 10.1016/j.icarus.2008.12.002.en_US
dc.identifier.citedreferenceFox, J. L., J. F. Brannon, and H. S. Porter ( 1993 ), Upper limits to the nightside ionosphere of Mars, Geophys. Res. Lett., 20, 1339 – 1342, doi: 10.1029/93GL01349.en_US
dc.identifier.citedreferenceFox, J. L., P. Zhou, and S. W. Bougher ( 1996 ), The Martian thermosphere/ionosphere at high and low solar activities, Adv. Space Res., 17, 203 – 218, doi: 10.1016/0273-1177(95)00751-Y.en_US
dc.identifier.citedreferenceFritts, D. C., L. Wang, and R. H. Tolson ( 2006 ), Mean and gravity wave structures and variability in the Mars upper atmosphere inferred from Mars Global Surveyor and Mars Odyssey aerobraking densities, J. Geophys. Res., 111, A12304, doi: 10.1029/2006JA011897.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., M. López‐Valverde, M. Angelats i Coll, and F. Forget ( 2005 ), Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models, J. Geophys. Res., 110, E09008, doi: 10.1029/2004JE002312.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., G. Gilli, and M. A. López‐Valverde ( 2008 ), Nitrogen and ionospheric chemistry in the thermospheric LMD‐MGCM, in Third International Workshop on The Mars Atmosphere: Modeling and Observations, pp. 9007, lPI Contribution 1447.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., F. Forget, M. López‐Valverde, M. Angelats i Coll, and E. Millour ( 2009a ), A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures, J. Geophys. Res., 114, E04001, doi: 10.1029/2008JE003246.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., F. Forget, M. A. López‐Valverde, and M. Angelats i Coll ( 2009b ), A ground‐to‐exosphere Martian general circulation model: 2. Atmosphere during solstice conditions—Thermospheric polar warming, J. Geophys. Res., 114, E08004, doi: 10.1029/2008JE003277.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., S. W. Bougher, and M. E. A. López‐Valverde ( 2010 ), Thermal and wind structure of the Martian thermosphere as given by two general circulation models, Planet. Space Sci., 58, 1832 – 1849, doi: 10.1016/j.pss.2010.08.013.en_US
dc.identifier.citedreferenceGonzález‐Galindo, F., J.‐Y. Chaufray, M. A. López‐Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, and M. Yagi ( 2013 ), 3D Martian Ionosphere model: I. The photochemical ionosphere below 180 km, J. Geophys. Res. Planets, 118, 2105 – 2123, doi: 10.1002/jgre.20150.en_US
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2005 ), Radar soundings of the ionosphere of Mars, Science, 310, 1929 – 1933, doi: 10.1126/science.1121868.en_US
dc.identifier.citedreferenceHaberle, R. M., et al. ( 1999 ), General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data, J. Geophys. Res., 104, 8957 – 8974, doi: 10.1029/1998JE900040.en_US
dc.identifier.citedreferenceHaberle, R. M., J. L. Hollingsworth, A. Colaprete, A. F. C. Bridger, C. P. McKay, J. R. Murphy, J. Schaeffer, and R. Freedman ( 2003 ), The NASA/AMES Mars general circulation model: Model improvements and comparison with observations, in Published Conference Abstract, International Workshop: Mars Atmosphere Modelling and Observations.en_US
dc.identifier.citedreferenceHaider, S. A., K. K. Mahajan, and E. Kallio ( 2011 ), Mars ionosphere: A review of experimental results and modeling studies, Rev. Geophys., 49, RG4001, doi: 10.1029/2011RG000357.en_US
dc.identifier.citedreferenceHanson, W. B., S. Sanatani, and D. R. Zuccaro ( 1977 ), The Martian ionosphere as observed by the Viking retarding potential analyzers, J. Geophys. Res., 82, 4351 – 4363, doi: 10.1029/JS082i028p04351.en_US
dc.identifier.citedreferenceHuestis, D. L., S. W. Bougher, J. L. Fox, M. Galand, R. E. Johnson, J. I. Moses, and J. C. Pickering ( 2008 ), Cross sections and reaction rates for comparative planetary aeronomy, Space Sci. Rev., 139, 63 – 105, doi: 10.1007/s11214-008-9383-7.en_US
dc.identifier.citedreferenceHuestis, D. L., T. G. Slanger, B. D. Sharpee, and J. L. Fox ( 2010 ), Chemical origins of the Mars ultraviolet dayglow, Faraday Discuss., 147, 307 – 322.en_US
dc.identifier.citedreferenceKasahara, A. ( 1974 ), Various vertical coordinate systems used for numerical weather prediction, Mon. Weather Rev., 102 ( 7 ), 509 – 522.en_US
dc.identifier.citedreferenceKasting, J. F., J. B. Pollack, and D. Crisp ( 1984 ), Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth, J. Atmos. Chem., 1 ( 4 ), 403 – 428.en_US
dc.identifier.citedreferenceKeating, G. M., et al. ( 1998 ), The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars global surveyor, Science, 279, 1672 – 1676, doi: 10.1126/science.279.5357.1672.en_US
dc.identifier.citedreferenceKeating, G. M., M. E. Theriot, R. H. Tolson, S. W. Bougher, F. Forget, M. A. i Coll, and J. M. Forbes ( 2003 ), Recent detection of winter polar warming in the Mars upper atmosphere, The Third International Mars Polar Science Conference, p. 8033, Pasadena, Calif.en_US
dc.identifier.citedreferenceKeating, G. M., S. W. Bougher, M. E. Theriot, and R. H. Tolson ( 2008 ), Properties of the Mars upper atmosphere derived from accelerometer measurements, Proceedings of the 37th COSPAR Scientific Assembly, Montreal, Canada.en_US
dc.identifier.citedreferenceKleinböhl, A., et al. ( 2009 ), Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, J. Geophys. Res., 114, E10006, doi: 10.1029/2009JE003358.en_US
dc.identifier.citedreferenceMoudden, Y., and J. Forbes ( 2010 ), A new interpretation of Mars aerobraking variability: Planetary wave‐tide interactions, J. Geophys. Res., 115, E09005, doi: 10.1029/2009JE003542.en_US
dc.identifier.citedreferenceKleinböhl, A., J. T. Schofield, W. A. Abdou, P. G. J. Irwin, and R. J. de Kok ( 2011 ), A single scattering approximation for infrared radiative transfer in limb geometry in the Martian atmosphere, J. Quant. Spectrosc. Radiat. Transfer, 112, 1568 – 1580, doi: 10.1016/j.jqsrt.2011.03.006.en_US
dc.identifier.citedreferenceKrasnopolsky, V. A. ( 2010 ), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere, Icarus, 207, 638 – 647.en_US
dc.identifier.citedreferenceLeblanc, F., O. Witasse, J. Winningham, D. Brain, J. Lilensten, P.‐L. Blelly, R. Frahm, J. Halekas, and J.‐L. Bertaux ( 2006 ), Origins of the Martian aurora observed by spectroscopy for investigation of characteristics of the atmosphere of Mars (SPICAM) on board Mars Express, J. Geophys. Res., 111, A09313, doi: 10.1029/2006JA011763.en_US
dc.identifier.citedreferenceLefèvre, F., S. Lebonnois, F. Montmessin, and F. Forget ( 2004 ), Three‐dimensional modeling of ozone on Mars, J. Geophys. Res., 109, E07004, doi: 10.1029/2004JE002268.en_US
dc.identifier.citedreferenceLillis, R. J., S. W. Bougher, F. González‐Galindo, F. Forget, M. D. Smith, and P. C. Chamberlin ( 2010 ), Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations, J. Geophys. Res., 115, E07014, doi: 10.1029/2009JE003529.en_US
dc.identifier.citedreferenceLiu, H.‐L., et al. ( 2010 ), Thermosphere extension of the Whole Atmosphere Community Climate Model, J. Geophys. Res., 115, A12302, doi: 10.1029/2010JA015586.en_US
dc.identifier.citedreferenceLopez‐Valverde, M., and M. Lopez‐Puertas ( 2001 ), CO2 non‐LTE cooling rate at 15 um and its parametrisation for the Mars atmosphere, Esa contract: Martian environment Models, Instituto de Astrofisica de Andalucia, Granada, Spain.en_US
dc.identifier.citedreferenceLópez‐Valverde, M. A., D. P. Edwards, M. López‐Puertas, and C. Roldán ( 1998 ), Non‐local thermodynamic equilibrium in general circulation models of the Martian atmosphere: 1. Effects of the local thermodynamic equilibrium approximation on thermal cooling and solar heating, J. Geophys. Res., 103, 16,799 – 16,811, doi: 10.1029/98JE01601.en_US
dc.identifier.citedreferenceLópez‐Valverde, M. A., F. González‐Galindo, and F. Foorget ( 2006 ), 1‐D and 3‐D modeling of the upper atmosphere of Mars, 2nd Workshop on Mars Atmosphere Modeling and Observations, Granada, Spain.en_US
dc.identifier.citedreferenceMarsh, D. R., M. J. Mills, D. E. Kinnison, J.‐F. Lamarque, N. Calvo, and L. M. Polvani ( 2013 ), Climate change from 1850 to 2005 simulated in CESM1 (WACCM), J. Clim., 26, 7372 – 7391.en_US
dc.identifier.citedreferenceMason, E., and T. Marrero ( 1970 ), The diffusion of atoms and molecules, Adv. At. Mol. Phy., 6, 155 – 232.en_US
dc.identifier.citedreferenceMassman, W. ( 1998 ), A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP, Atmos. Environ., 32 ( 6 ), 1111 – 1127.en_US
dc.identifier.citedreferenceMcCleese, D. J. E. A. ( 2008 ), Intense polar temperature inversion in the middle atmosphere of Mars, Nat. Geosci., 1, 745 – 749, doi: 10.1038/ngeo332.en_US
dc.identifier.citedreferenceMcDunn, T., S. Bougher, J. Murphy, A. Kleinböhl, F. Forget, and M. Smith ( 2013 ), Characterization of middle‐atmosphere polar warming at Mars, J. Geophys. Res. Planets, 118, 161 – 178, doi: 10.1002/jgre.20016.en_US
dc.identifier.citedreferenceMcDunn, T. L., S. W. Bougher, J. Murphy, M. D. Smith, F. Forget, J.‐L. Bertaux, and F. Montmessin ( 2010 ), Simulating the density and thermal structure of the middle atmosphere (80–130 km) of Mars using the MGCM‐MTGCM: A comparison with MEX/SPICAM observations, Icarus, 206, 5 – 17, doi: 10.1016/j.icarus.2009.06.034.en_US
dc.identifier.citedreferenceMedvedev, A., and E. Yiğit ( 2012 ), Thermal effects of internal gravity waves in the Martian upper atmosphere, Geophys. Res. Lett., 39, L05201, doi: 10.1029/2012GL050852.en_US
dc.identifier.citedreferenceMedvedev, A., E. Yiğit, P. Hartough, and E. Becker ( 2011 ), Influence of gravity waves on the Martian atmosphere: General circulation modeling, J. Geophys. Res., 116, E10004, doi: 10.1029/2011JE003848.en_US
dc.identifier.citedreferenceMedvedev, A., E. Yiğit, T. Kuroda, and P. Hartough ( 2013 ), General circulation modeling of the Martian upper atmosphere during global dust storms, J. Geophys. Res. Planets, 118, 2234 – 2246, doi: 10.1002/2013JE004429.en_US
dc.identifier.citedreferenceMedvedev, A., E. Yiğit, T. Kuroda, and P. Hartogh ( 2014 ), Response of the Martian upper atmosphere to lower atmospheric dust storms: GCM study, in The Fifth International Workshop on the Mars Atmosphere: Modelling and Observation, edited by F. Forget and M. Millour. id. 3201, vol. 1, p. 3201, Oxford, U. K., 13–16 Jan.en_US
dc.identifier.citedreferenceMendillo, M., A. Marusiak, P.‐G. Withers, D. Morgan, and D. Gurnett ( 2013 ), A new semi‐empirical model of the peak electron density of the Martian ionosphere, Geophys. Res. Lett., 40, 5361 – 5365, doi: 10.1002/2013GL057631.en_US
dc.identifier.citedreferenceMEPAG Goals Committee ( 2010 ), Mars Exploration Program Analysis Group (MEPAG) science goals.en_US
dc.identifier.citedreferenceMischna, M. A., C. Lee, and M. Richardson ( 2012 ), Development of a fast, accurate radiative transfer model for the Martian atmosphere, past and present, J. Geophys. Res., 117, E10009, doi: 10.1029/2012JE004110.en_US
dc.identifier.citedreferenceMontmessin, F., F. Forget, P. Rannou, M. Cabane, and R. Haberle ( 2004 ), Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model, J. Geophys. Res., 109, E10004, doi: 10.1029/2004JE002284.en_US
dc.identifier.citedreferenceMorgan, D., D. Gurnett, D. Kirchner, J. L. Fox, E. Nielsen, and J. Plaut ( 2008 ), Variation of the Martian ionospheric electron density from Mars Express radar soundings, J. Geophys. Res., 113, A09303, doi: 10.1029/2008JA013313.en_US
dc.identifier.citedreferenceMoudden, Y., and J. Forbes ( 2008 ), Topographic connections with density waves in Mars' aerobraking regime, J. Geophys. Res., 113, E11009, doi: 10.1029/2008JE003107.en_US
dc.identifier.citedreferenceMueller‐Wodarg, I. C. F., R. V. Yelle, and M. E. A. Mendillo ( 2000 ), The thermosphere of Titan simulated by a global three‐dimensional time‐dependent model, J. Geophys. Res., 105, 20,833 – 20,856, doi: 10.1029/2000JA000053.en_US
dc.identifier.citedreferenceNier, A., and M. B. McElroy ( 1977 ), Composition and structure of Mars' upper atmosphere: Results from the neutral mass spectrometers on Viking 1 and 2, J. Geophys. Res., 82 ( 28 ), 4341 – 4349.en_US
dc.identifier.citedreferenceOckert‐Bell, M. E., J. F. Bell III, J. B. Pollack, C. P. McKay, and F. Forget ( 1997 ), Absorption and scattering properties of the Martian dust in the solar wavelengths, J. Geophys. Res., 102 ( E4 ), 9039 – 9050.en_US
dc.identifier.citedreferencePalmer, T., G. Shutts, and R. Swinbank ( 1986 ), Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Q. J. R. Meteorol. Soc., 112, 1001 – 1039.en_US
dc.identifier.citedreferencePawlowski, D., and A. Ridley ( 2008 ), Modeling the thermospheric response to solar flares, J. Geophys. Res., 113, A10309, doi: 10.1029/2008JA013182.en_US
dc.identifier.citedreferencePawlowski, D. J., and A. J. Ridley ( 2009a ), Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere, Radio Sci., 44, RS0A23, doi: 10.1029/2008RS004081.en_US
dc.identifier.citedreferencePawlowski, D. J., and A. J. Ridley ( 2009b ), Quantifying the effect of thermospheric parameterization in a global model, J. Atmos. Sol. Terr. Phys., 71, 2017 – 2026, doi: 10.1016/j.jastp.2009.09.007.en_US
dc.identifier.citedreferencePawlowski, D., S. Bougher, and A. Ridley ( 2010 ), The effect of solar variability on the Martian thermosphere and ionosphere system, in 38th COSPAR Scientific Assembly, vol. 38, pp. 1100, Copernicus Meetings, Gottingen, Germany.en_US
dc.identifier.citedreferencePawlowski, D. J., S. W. Bougher, and P. Chamberlin ( 2011 ), Modeling the response of the Martian upper atmosphere to solar flares, Abstract P21A‐1643 presented at 2011 Fall Meeting, AGU, Washington, D. C.en_US
dc.identifier.citedreferencePollack, J. B., O. B. Toon, and R. Boese ( 1980 ), Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements, J. Geophys. Res., 85 ( A13 ), 8223 – 8231.en_US
dc.identifier.citedreferenceRidley, A., Y. Deng, and G. Tòth ( 2006 ), The Global Ionosphere‐Thermosphere Model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864.en_US
dc.identifier.citedreferenceRoble, R., E. Ridley, and R. Dickinson ( 1987 ), On the global mean structure of the thermosphere, J. Geophys. Res., 92, 8745 – 8758.en_US
dc.identifier.citedreferenceRoble, R., E. Ridley, A. Richmond, and R. Dickinson ( 1988 ), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325 – 1328.en_US
dc.identifier.citedreferenceRoble, R. G. ( 1995 ), Energetics of the mesosphere and thermosphere, AGU Geophys. Monogr., 87, 1 – 22.en_US
dc.identifier.citedreferenceRodrigo, R., E. García‐Álvarez, M. López‐González, and J. López‐Moreno ( 1990 ), A nonsteady one‐dimensional theoretical model of Mars' neutral atmospheric composition between 30 and 200 km, J. Geophys. Res., 95 ( B9 ), 14,795 – 14,810.en_US
dc.identifier.citedreferenceSadourny, R., and K. Laval ( 1984 ), January and July performance of the LMD general circulation model, in New Perspectives in Climate Modeling, edited by A. Berger and C. Nicolis, pp. 173 – 197, Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceSafaeinili, A., W. Kofman, J. Mouginot, Y. Gim, A. Herique, A. B. Ivanov, J. J. Plaut, and G. Picardi ( 2007 ), Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes, Geophys. Res. Lett., 34, L23204, doi: 10.1029/2007GL032154.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.