Show simple item record

Increase in mercury in Pacific yellowfin tuna

dc.contributor.authorDrevnick, Paul E.en_US
dc.contributor.authorLamborg, Carl H.en_US
dc.contributor.authorHorgan, Martin J.en_US
dc.date.accessioned2015-04-02T15:12:19Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04en_US
dc.identifier.citationDrevnick, Paul E.; Lamborg, Carl H.; Horgan, Martin J. (2015). "Increase in mercury in Pacific yellowfin tuna." Environmental Toxicology and Chemistry 34(4): 931-934.en_US
dc.identifier.issn0730-7268en_US
dc.identifier.issn1552-8618en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110840
dc.description.abstractMercury is a toxic trace metal that can accumulate to levels that threaten human and environmental health. Models and empirical data suggest that humans are responsible for a great deal of the mercury actively cycling in the environment at present. Thus, one might predict that the concentration of mercury in fish should have increased dramatically since the Industrial Revolution. Evidence in support of this hypothesis has been hard to find, however, and some studies have suggested that analyses of fish show no change in mercury concentration. By compiling and re‐analyzing published reports on yellowfin tuna (Thunnus albacares) caught near Hawaii (USA) over the past half century, the authors found that the concentration of mercury in these fish currently is increasing at a rate of at least 3.8% per year. This rate of increase is consistent with a model of anthropogenic forcing on the mercury cycle in the North Pacific Ocean and suggests that fish mercury concentrations are keeping pace with current loading increases to the ocean. Future increases in mercury in yellowfin tuna and other fishes can be avoided by reductions in atmospheric mercury emissions from point sources. Environ Toxicol Chem 2015;34:931–934. © 2015 SETACen_US
dc.publisherUniversity of California Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMercuryen_US
dc.subject.otherBioaccumulationen_US
dc.subject.otherMethylmercuryen_US
dc.titleIncrease in mercury in Pacific yellowfin tunaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110840/1/etc2883.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110840/2/etc2883-sup-0001-SuppData-S1.pdf
dc.identifier.doi10.1002/etc.2883en_US
dc.identifier.sourceEnvironmental Toxicology and Chemistryen_US
dc.identifier.citedreferenceHammerschmidt CR, Bowman KL. 2012. Vertical methylmercury distribution in the subtropical North Pacific Ocean. Mar Chem 132–133 77 – 82.en_US
dc.identifier.citedreferenceHammond AL. 1971. Mercury in the environment: Natural and human factors. Science 171: 788 – 789.en_US
dc.identifier.citedreferenceItano DG, Holland KN. 2000. Movement and vulnerability of bigeye ( Thunnus obesus ) and yellowfin tuna ( Thunnus albacares ) in relation to FADs and natural aggregation points. Aquat Living Resour 13: 213 – 223.en_US
dc.identifier.citedreferenceRivers JB, Pearson JE, Shultz CD. 1972. Total and organic mercury in marine fish. Bull Environ Contam Toxicol 8: 257 – 266.en_US
dc.identifier.citedreferenceThieleke JR. 1973. Mercury levels in five species of commercially important pelagic fish taken from the Pacific Ocean near Hawaii. PhD Dissertation. University of Wisconsin‐Madison, Madison, WI, USA.en_US
dc.identifier.citedreferenceKraepiel AML, Keller K, Chin HB, Malcolm EG, Morel FMM. 2003. Sources and variations of mercury in tuna. Environ Sci Technol 37: 5551 – 5558.en_US
dc.identifier.citedreferenceChoy CA, Popp BN, Kaneko JJ, Drazen JC. 2009. The influence of depth on mercury levels in pelagic fishes and their prey. Proc Natl Acad Sci U S A 106: 13865 – 13869.en_US
dc.identifier.citedreferenceBloom NS. 1992. On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49: 1010 – 1017.en_US
dc.identifier.citedreferenceBoush GM, Thieleke JR. 1983. Total mercury content in yellowfin and bigeye tuna. Bull Environ Contam Toxicol 30: 291 – 297.en_US
dc.identifier.citedreferenceChoy CA. 2013. Pelagic food web connectivity in the north Pacific subtropical gyre: A combined perspective from multiple biochemical tracers and diet. PhD Dissertation, University of Hawaii at Manoa, Honolulu, HI, USA.en_US
dc.identifier.citedreferenceCumont G, Viallex G, Lelièvre H, Bobenrieth P. 1975. Mercury contamination in sea fish. Translation Series No. 3373. Fisheries and Marine Service Canada, Halifax, NS.en_US
dc.identifier.citedreferenceGraham BS, Grubbs D, Holland K, Popp BN. 2006. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar Biol 150: 647 – 658.en_US
dc.identifier.citedreferenceLamborg CH, Von Damm KL, Fitzgerald WF, Hammerschmidt CR, Zierenberg R. 2006. Mercury and monomethylmercury in fluids from Sea Cliff submarine hydrothermal field, Gorda Ridge. Geophys Res Lett 33: L17606.en_US
dc.identifier.citedreferenceBlum JD, Popp BN, Drazen JC, Choy CA, Johnson MW. 2013. Methylmercury production below the mixed layer in the North Pacific Ocean. Nat Geosci 6: 879 – 884.en_US
dc.identifier.citedreferenceSunderland EM, Krabbenhoft DP, Moreau JW, Strode SA, Landing WM. 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Glob Biogeochem Cycles 23:GB2010, DOI: 10.1029/2008GB003425en_US
dc.identifier.citedreferenceBrill RW, Block BA, Boggs CH, Bigelow KA, Freund EV, Marcinek DJ. 1999. Horizontal movements and depth distribution of large adult yellowfin tuna ( Thunnus albacares ) near the Hawaiian Islands, recorded using ultrasonic telemetry: Implications for the physiological ecology of pelagic fishes. Mar Biol 133: 395 – 408.en_US
dc.identifier.citedreferenceRenner R. 2004. Where is the mercury? Environ Sci Technol 38: 12A.en_US
dc.identifier.citedreferenceSibert J, Hampton J, Kleiber P, Maunder M. 2006. Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314: 1773 – 1776.en_US
dc.identifier.citedreferenceZhu G, Xu L, Dai X, Liu W. 2011. Growth and mortality rates of yellowfin tuna, Thunnus albacares (Perciformes: Scombridae), in the eastern and central Pacific Ocean. Zoologia 28: 199 – 206.en_US
dc.identifier.citedreferencePolacheck T, Eveson JP, Laslett GF. 2004. Increase in growth rates of southern bluefin tuna (Thunnus maccoyii) over four decades: 1960 to 2000. Can J Fish. Aquat Sci 61: 307 – 322.en_US
dc.identifier.citedreferenceNewman MC, Unger MA. 2003. Fundamentals of Ecotoxicology, 2nd ed. CRC Press, Boca Raton, FL, USA.en_US
dc.identifier.citedreferenceSelin NE. 2014. Global change and mercury cycling: Challenges for implementing a global mercury treaty. Environ Toxicol Chem 33: 1202 – 1210.en_US
dc.identifier.citedreferenceHarada M. 1995. Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25: 1 – 24.en_US
dc.identifier.citedreferenceMcKelvey W, Oken E. 2012. Mercury and public health: An assessment of human exposure. In Banks MS, ed, Mercury in the Environment: Pattern and Process. University of California Press, Oakland, CA, USA, pp 267 – 287.en_US
dc.identifier.citedreferenceTrasande L, Landrigan PJ, Schechter C. 2005. Public health and economic consequences of methyl mercury toxicity to the developing brain. Environ Health Perspect 113: 590 – 596.en_US
dc.identifier.citedreferenceSunderland EM. 2007. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ Health Perspect 115: 235 – 242.en_US
dc.identifier.citedreferenceBlack FJ, Conaway CH, Flegal AR. 2012. Mercury in the marine environment. In Banks MS, ed, Mercury in the Environment, University of California Press, Oakland, CA, USA, pp 167 – 219.en_US
dc.identifier.citedreferenceLamborg CH, Hammerschmidt CR, Bowman KL, Swarr GJ, Munson KM, Ohnemus DC, Lam PJ, Heimbürger L‐E, Rijkenberg MJA, Saito MA. 2014. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512: 65 – 68.en_US
dc.identifier.citedreferenceMason RP, Fitzgerald WF, Morel FMM. 1994. The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochim Cosmochim Acta 58: 3191 – 3198.en_US
dc.identifier.citedreferenceEngstrom DR, Fitzgerald WF, Cooke CA, Lamborg CH, Drevnick PE, Swain EB, Balogh SJ, Balcom PH. 2014. Atmospheric Hg emissions from preindustrial gold and silver extraction in the Americas: A reevaluation from lake sediment archives. Environ Sci Technol 48: 6533 – 6543.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.