Show simple item record

Thermospheric winds around the cusp region

dc.contributor.authorSheng, Chengen_US
dc.contributor.authorDeng, Yueen_US
dc.contributor.authorWu, Qianen_US
dc.contributor.authorRidley, Aaronen_US
dc.contributor.authorHäggström, Ingemaren_US
dc.date.accessioned2015-04-02T15:12:26Z
dc.date.available2016-03-02T19:36:55Zen
dc.date.issued2015-02en_US
dc.identifier.citationSheng, Cheng; Deng, Yue; Wu, Qian; Ridley, Aaron; Häggström, Ingemar (2015). "Thermospheric winds around the cusp region." Journal of Geophysical Research: Space Physics 120(2): 1248-1255.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110850
dc.description.abstractAn equatorward wind has been observed first by the balloon‐borne Fabry‐Perot interferometer called High‐Altitude Interferometer Wind Observation on the equatorward side of the cusp near the local noon, which is opposite to the typical direction of neutral wind driven by the day‐night pressure gradient. However, this dayside equatorward wind was not reproduced by the standard Thermosphere Ionosphere Electrodynamics General Circulation Model under the resolution of 5° longitude by 5° latitude (5°×5°). In this study, the Global Ionosphere Thermosphere Model has been run in different cases and under different resolutions to investigate the neutral dynamics around the cusp region. First, we compare the simulations with and without additional cusp energy inputs to identify the influence of cusp heating. Both runs have a resolution of 5°×1° (longitude × latitude) in order to better resolve the cusp region. After adding in the cusp energy, the meridional wind in simulation turns to be equatorward on the dayside, which is consistent with the observation. It indicates that strong heating in the cusp region causes changes in the pressure gradient around the cusp and subsequent variations in the neutral winds. The simulations with the same cusp heating specifications are repeated, but with different horizontal resolutions to examine the influence of resolution on the simulation results. The comparisons show that the resolution of 5°×1° can resolve the cusp region much more stably and consistently than the 5°×5° resolution.Key PointsThe observed equatorward winds around the cusp have been reproduced by GITMThe impact of cusp energy on the horizontal neutral winds has been studiedThe influence of resolution on cusp simulation has also been investigateden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGITMen_US
dc.subject.othercuspen_US
dc.subject.othersoft electron precipitationen_US
dc.subject.otherthermospheric windsen_US
dc.subject.otherPoynting fluxen_US
dc.titleThermospheric winds around the cusp regionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110850/1/jgra51569.pdf
dc.identifier.doi10.1002/2014JA020028en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSmith, M. F., and M. Lockwood ( 1996 ), Earth's magnetospheric cusps, Rev. Geophys., 34, 233 – 260, doi: 10.1029/96RG00893.en_US
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D.‐S. Evans ( 1987 ), Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data, J. Geophys. Res., 92, 7606 – 7618, doi: 10.1029/JA092iA07p07606.en_US
dc.identifier.citedreferenceKelley, M. C., D. J. Knudsen, and J. F. Vickrey ( 1991 ), Poynting flux measurements on a satellite: A diagnostic tool for space research, J. Geophys. Res., 96, 201 – 207, doi: 10.1029/90JA01837.en_US
dc.identifier.citedreferenceKilleen, T. L., and R. G. Roble ( 1988 ), Thermosphere dynamics: Contributions from the first 5 years of the Dynamics Explorer Program, Rev. Geophys., 26, 329 – 367, doi: 10.1029/RG026i002p00329.en_US
dc.identifier.citedreferenceKilleen, T. L., Y.‐I. Won, R. J. Niciejewski, and A. G. Burns ( 1995 ), Upper thermosphere winds and temperatures in the geomagnetic polar cap: Solar cycle, geomagnetic activity, and interplanetary magnetic field dependencies, J. Geophys. Res., 100, 21,327 – 21,342, doi: 10.1029/95JA01208.en_US
dc.identifier.citedreferenceKnipp, D., S. Eriksson, L. Kilcommons, G. Crowley, J. Lei, M. Hairston, and K. Drake ( 2011 ), Extreme Poynting flux in the dayside thermosphere: Examples and statistics, Geophys. Res. Lett., 38, L16102, doi: 10.1029/2011GL048302.en_US
dc.identifier.citedreferenceLühr, H., M. Rother, W. Köhler, P. Ritter, and L. Grunwaldt ( 2004 ), Thermospheric up‐welling in the cusp region: Evidence from CHAMP observations, Geophys. Res. Lett., 31, L06805, doi: 10.1029/2003GL019314.en_US
dc.identifier.citedreferenceMeriwether, J. W. ( 2006 ), Studies of thermospheric dynamics with a Fabry–Perot interferometer network: A review, J. Atmos. Sol. Terr. Phys., 68, 1576 – 1589, doi: 10.1016/j.jastp.2005.11.014.en_US
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1987 ), Cusp width and B(z): Observations and a conceptual model, J. Geophys. Res., 92, 13,673 – 13,678, doi: 10.1029/JA092iA12p13673.en_US
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1992 ), Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics, Geophys. Res. Lett., 19, 609 – 612, doi: 10.1029/92GL00404.en_US
dc.identifier.citedreferenceNewell, P. T., C.‐I. Meng, D. G. Sibeck, and R. Lepping ( 1989 ), Some low‐altitude cusp dependencies on the interplanetary magnetic field, J. Geophys. Res., 94, 8921 – 8927, doi: 10.1029/JA094iA07p08921.en_US
dc.identifier.citedreferenceRees, D., P. J. Charleton, N. Lloyd, R. W. Smith, F. G. McCormac, and A. Steen ( 1984 ), The generation of vertical thermospheric winds and gravity waves at auroral latitudes—I. Observations of vertical winds, Planet. Space Sci., 32, 667 – 684, doi: 10.1016/0032-0633(84)90092-8.en_US
dc.identifier.citedreferenceRentz, S., and H. Lühr ( 2008 ), Climatology of the cusp‐related thermospheric mass density anomaly, as derived from CHAMP observations, Ann. Geophys., 26, 2807 – 2823, doi: 10.5194/angeo-26-2807-2008.en_US
dc.identifier.citedreferenceRichmond, A. D. ( 2010 ), On the ionospheric application of Poynting's theorem, J. Geophys. Res., 115, A10311, doi: 10.1029/2010JA015768.en_US
dc.identifier.citedreferenceRidley, A. J., Y. Deng, and G. Tóth ( 2006 ), The global ionosphere thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864, doi: 10.1016/j.jastp.2006.01.008.en_US
dc.identifier.citedreferenceRishbeth, H. ( 1972 ), Thermospheric winds and the F‐region: A review, J. Atmos. Terr. Phys., 34, 1 – 47.en_US
dc.identifier.citedreferenceThayer, J. P., G. Crowley, R. J. Niciejewski, T. L. Killeen, J. Buchau, and B. W. Reinisch ( 1995 ), Ground‐based observations of ion/neutral coupling at Thule and Qanaq, Greenland, J. Geophys. Res., 100, 12,189 – 12,199, doi: 10.1029/95JA00131.en_US
dc.identifier.citedreferenceTitheridge, J. E. ( 1995 ), Winds in the ionosphere—A review, J. Atmos. Terr. Phys., 57, 1681 – 1714.en_US
dc.identifier.citedreferenceVontrat‐Reberac, A., D. Fontaine, P.‐L. Blelly, and M. Galand ( 2001 ), Theoretical predictions of the effect of cusp and dayside precipitation on the polar ionosphere, J. Geophys. Res., 106, 28,857 – 28,866, doi: 10.1029/2001JA900131.en_US
dc.identifier.citedreferenceWeimer, D. R. ( 1996 ), A flexible, IMF dependent model of high‐latitude electric potentials having “Space Weather” applications, Geophys. Res. Lett., 23, 2549 – 2552, doi: 10.1029/96GL02255.en_US
dc.identifier.citedreferenceWu, Q., W. Wang, R. G. Roble, I. Häggström, and A. Strømme ( 2012 ), First daytime thermospheric wind observation from a balloon‐borne Fabry‐Perot interferometer over Kiruna (68N), Geophys. Res. Lett., 39, L14104, doi: 10.1029/2012GL052533.en_US
dc.identifier.citedreferenceYordanova, E., D. Sundkvist, S. C. Buchert, M. André, Y. Ogawa, M. Morooka, O. Margithu, O. Amm, A. N. Fazakerley, and H. Réme ( 2007 ), Energy input from the exterior cusp into the ionosphere: Correlated ground‐based and satellite observations, Geophys. Res. Lett., 34, L04102, doi: 10.1029/2006GL028617.en_US
dc.identifier.citedreferenceZhang, B., O. Brambles, W. Lotko, W. Dunlap‐Shohl, R. Smith, M. Wiltberger, and J. Lyon ( 2013 ), Predicting the location of polar cusp in the Lyon‐Fedder‐Mobarry global magnetosphere simulation, J. Geophys. Res. Space Physics, 118, 6327 – 6337, doi: 10.1002/jgra.50565.en_US
dc.identifier.citedreferenceZhou, X. W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder ( 2000 ), Solar wind control of the polar cusp at high altitude, J. Geophys. Res., 105, 245 – 252, doi: 10.1029/1999JA900412.en_US
dc.identifier.citedreferenceDeng, Y., and A. J. Ridley ( 2006 ), Dependence of neutral winds on convection E‐field, solar EUV, and auroral particle precipitation at high latitudes, J. Geophys. Res., 111, A09306, doi: 10.1029/2005JA011368.en_US
dc.identifier.citedreferenceDeng, Y., T. J. Fuller‐Rowell, A. J. Ridley, D. Knipp, and R. E. Lopez ( 2013 ), Theoretical study: Influence of different energy sources on the cusp neutral density enhancement, J. Geophys. Res. Space Physics, 118, 2340 – 2349, doi: 10.1002/jgra.50197.en_US
dc.identifier.citedreferenceEather, R. H. ( 1985 ), Polar cusp dynamics, J. Geophys. Res., 90, 1569 – 1576, doi: 10.1029/JA090iA02p01569.en_US
dc.identifier.citedreferenceFang, X., C. E. Randall, D. Lummerzheim, S. C. Solomon, M. J. Mills, D. R. Marsh, C. H. Jackman, W. Wang, and G. Lu ( 2008 ), Electron impact ionization: A new parameterization for 100 eV to 1 MeV electrons, J. Geophys. Res., 113, A09311, doi: 10.1029/2008JA013384.en_US
dc.identifier.citedreferenceFrey, H. U. ( 2007 ), Localized aurora beyond the auroral oval, Rev. Geophys., 45, RG1003, doi: 10.1029/2005RG000174.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.