Show simple item record

Two‐Dimensional Crystals from Reduced Symmetry Analogues of Trimesic Acid

dc.contributor.authorBarnard, Rachel A.en_US
dc.contributor.authorDutta, Ananyaen_US
dc.contributor.authorSchnobrich, Jennifer K.en_US
dc.contributor.authorMorrison, Christine N.en_US
dc.contributor.authorAhn, Seokhoonen_US
dc.contributor.authorMatzger, Adam J.en_US
dc.date.accessioned2015-04-02T15:12:32Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-04-07en_US
dc.identifier.citationBarnard, Rachel A.; Dutta, Ananya; Schnobrich, Jennifer K.; Morrison, Christine N.; Ahn, Seokhoon; Matzger, Adam J. (2015). "Two‐Dimensional Crystals from Reduced Symmetry Analogues of Trimesic Acid." Chemistry – A European Journal 21(15): 5954-5961.en_US
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110860
dc.description.abstractThe two‐dimensional assembly of multicarboxylated arenes is explored at the liquid–graphite interface using scanning tunneling microscopy. Symmetry variations were introduced via phenylene spacer addition and the influence of these perturbations on the formation of hydrogen‐bonded motifs from an alkanoic acid solvent is observed. This work demonstrates the importance of symmetry in 2D crystal formation and draws possible links of this behavior to prediction of coordination modes in three‐dimensional coordination polymers.Crystal clear: 2D assemblies of a series of five reduced symmetry multicarboxylated molecules (such as depicted) related to trimesic acid, a prototypical high symmetry adsorbate, through the addition of phenylene spacers, are explored at the liquid–graphite interface using scanning tunneling microscopy. The 2D assembly behaviors of these multicarboxylate molecules mirror their coordination modes in 3D coordination polymers.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherhydrogen bondsen_US
dc.subject.othercrystal engineeringen_US
dc.subject.otherscanning tunneling microscopyen_US
dc.subject.otherself‐assemblyen_US
dc.subject.othermetal‐organic frameworksen_US
dc.titleTwo‐Dimensional Crystals from Reduced Symmetry Analogues of Trimesic Aciden_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and Macromolecular Science and Engineering, University of Michigan, 930 N. University Dr, Ann Arbor, MI 48109 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110860/1/chem_201406332_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110860/2/5954_ftp.pdf
dc.identifier.doi10.1002/chem.201406332en_US
dc.identifier.sourceChemistry – A European Journalen_US
dc.identifier.citedreferenceA. G. Wong‐Foy, O. Lebel, A. J. Matzger, J. Am. Chem. Soc. 2007, 129, 15740 – 15741.en_US
dc.identifier.citedreferenceL. Li, S. Wang, T. Chen, Z. Sun, J. Luo, M. Hong, Cryst. Growth Des. 2012, 12, 4109 – 4115;en_US
dc.identifier.citedreferenceY. Lu, W. Zhao, Y. Liu, B. Liu, X. Feng, J. Tan, X. Li, X. Yang, J. Solid State Chem. 2012, 192, 144 – 152;en_US
dc.identifier.citedreferenceZ. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H. Zhang, M. O’Keeffe, B. Chen, Chem. Commun. 2011, 47, 5551;en_US
dc.identifier.citedreferenceZ. Zhang, L. Zhang, L. Wojtas, P. Nugent, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 924 – 927;en_US
dc.identifier.citedreferenceW.‐W. He, S.‐L. Li, W.‐L. Li, J.‐S. Li, G.‐S. Yang, S.‐R. Zhang, Y.‐Q. Lan, P. Shen, Z.‐M. Su, J. Mater. Chem. A 2013, 1, 11111 – 11116;en_US
dc.identifier.citedreferenceT. Liu, S. Wang, J. Lu, J. Dou, M. Niu, D. Li, J. Bai, CrystEngComm 2013, 15, 5476 – 5489;en_US
dc.identifier.citedreferenceL. Li, S. Zhang, L. Han, Z. Sun, J. Luo, M. Hong, Cryst. Growth Des. 2013, 13, 106 – 110.en_US
dc.identifier.citedreferenceS. S.‐Y. Chui, S. M.‐F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science 1999, 283, 1148 – 1150.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. E. Plass, K. Kim, A. J. Matzger, J. Am. Chem. Soc. 2004, 126, 9042 – 9053;en_US
dc.identifier.citedreferenceJ. P. Rabe, S. Buchholz, L. Askadskaya, Synth. Met. 1993, 54, 339 – 349;en_US
dc.identifier.citedreferenceC. L. Claypool, F. Faglioni, W. A. Goddard, H. B. Gray, N. S. Lewis, R. A. Marcus, J. Phys. Chem. B 1997, 101, 5978 – 5995.en_US
dc.identifier.citedreferenceL. Feng, Z. Chen, T. Liao, P. Li, Y. Jia, X. Liu, Y. Yang, Y. Zhou, Cryst. Growth Des. 2009, 9, 1505 – 1510.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceE. Mena‐Osteritz, Adv. Mater. 2002, 14, 609 – 616;en_US
dc.identifier.citedreferenceT. Kirschbaum, R. Azumi, E. Mena‐Osteritz, P. Bauerle, New J. Chem. 1999, 23, 241 – 250;en_US
dc.identifier.citedreferenceP. Samorì, X. Yin, N. Tchebotareva, Z. Wang, T. Pakula, F. Jäckel, M. D. Watson, A. Venturini, K. Müllen, J. P. Rabe, J. Am. Chem. Soc. 2004, 126, 3567 – 3575;en_US
dc.identifier.citedreferenceM. Fischer, G. Lieser, A. Rapp, I. Schnell, W. Mamdouh, S. De Feyter, F. C. De Schryver, S. Höger, J. Am. Chem. Soc. 2003, 125, 214 – 222.en_US
dc.identifier.citedreferenceS. L. Price, Chem. Soc. Rev. 2014, 43, 2098 – 2111.en_US
dc.identifier.citedreferenceC. N. Morrison, S. Ahn, J. K. Schnobrich, A. J. Matzger, Langmuir 2011, 27, 936 – 942.en_US
dc.identifier.citedreferenceJ.‐R. Li, H.‐C. Zhou, Angew. Chem. Int. Ed. 2009, 48, 8465 – 8468; Angew. Chem. 2009, 121, 8617 – 8620.en_US
dc.identifier.citedreferenceH. Sun, J. Phys. Chem. B 1998, 102, 7338 – 7364.en_US
dc.identifier.citedreferenceK. R. Mitchell‐Koch, A. J. Matzger, J. Pharm. Sci. 2008, 97, 2121 – 2129.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. E. Plass, A. L. Grzesiak, A. J. Matzger, Acc. Chem. Res. 2007, 40, 287 – 293;en_US
dc.identifier.citedreferenceA. I. Kitaigorodskii, Organic Chemical Crystallography, Consultants Bureau, New York, 1959.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Kampschulte, M. Lackinger, A.‐K. Maier, R. S. K. Kishore, S. Griessl, M. Schmittel, W. M. Heckl, J. Phys. Chem. B 2006, 110, 10829 – 10836;en_US
dc.identifier.citedreferenceM. Lackinger, S. Griessl, W. M. Heckl, M. Hietschold, G. W. Flynn, Langmuir 2005, 21, 4984 – 4988;en_US
dc.identifier.citedreferenceS. Griessl, M. Lackinger, M. Edelwirth, M. Hietschold, W. M. Heckl, Single Mol. 2002, 3, 25 – 31;en_US
dc.identifier.citedreferenceM. Lackinger, S. Griessl, L. Kampschulte, F. Jamitzky, W. M. Heckl, Small 2005, 1, 532 – 539;en_US
dc.identifier.citedreferenceH. Zhou, H. Dang, J.‐H. Yi, A. Nanci, A. Rochefort, J. D. Wuest, J. Am. Chem. Soc. 2007, 129, 13774 – 13775;en_US
dc.identifier.citedreferenceL. Kampschulte, T. L. Werblowsky, R. S. K. Kishore, M. Schmittel, W. M. Heckl, M. Lackinger, J. Am. Chem. Soc. 2008, 130, 8502 – 8507;en_US
dc.identifier.citedreferenceG.‐J. Su, H.‐M. Zhang, L.‐J. Wan, C.‐L. Bai, T. Wandlowski, J. Phys. Chem. B 2004, 108, 1931 – 1937;en_US
dc.identifier.citedreferenceZ. Li, B. Han, L. J. Wan, T. Wandlowski, Langmuir 2005, 21, 6915 – 6928;en_US
dc.identifier.citedreferenceJ. M. MacLeod, O. Ivasenko, C. Fu, T. Taerum, F. Rosei, D. F. Perepichka, J. Am. Chem. Soc. 2009, 131, 16844 – 16850;en_US
dc.identifier.citedreferenceN. T. N. Ha, T. G. Gopakumar, R. Gutzler, M. Lackinger, H. Tang, M. Hietschold, J. Phys. Chem. C 2010, 114, 3531 – 3536.en_US
dc.identifier.citedreferenceJ. K. Schnobrich, O. Lebel, K. A. Cychosz, A. Dailly, A. G. Wong‐Foy, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 13941 – 13948.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceS. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W. M. Heckl, Langmuir 2004, 20, 9403 – 9407;en_US
dc.identifier.citedreferenceJ. Liu, X. Zhang, H.‐J. Yan, D. Wang, J.‐Y. Wang, J. Pei, L.‐J. Wan, Langmuir 2010, 26, 8195 – 8200;en_US
dc.identifier.citedreferenceS. J. H. Griessl, M. Lackinger, F. Jamitzky, T. Markert, M. Hietschold, W. M. Heckl, J. Phys. Chem. B 2004, 108, 11556 – 11560.en_US
dc.identifier.citedreferenceM. Lackinger, S. Griessl, T. Markert, F. Jamitzky, W. M. Heckl, J. Phys. Chem. B 2004, 108, 13652 – 13655.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceF. Tao, J. Goswami, S. L. Bernasek, J. Phys. Chem. B 2006, 110, 19562 – 19569;en_US
dc.identifier.citedreferenceK. G. Nath, O. Ivasenko, J. M. MacLeod, J. A. Miwa, J. D. Wuest, A. Nanci, D. F. Perepichka, F. Rosei, J. Phys. Chem. C 2007, 111, 16996 – 17007.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceZ.‐J. Lin, B. Xu, T.‐F. Liu, M.‐N. Cao, J. Lü, R. Cao, Eur. J. Inorg. Chem. 2010, 2010, 3842 – 3849;en_US
dc.identifier.citedreferenceC.‐S. Lim, J. K. Schnobrich, A. G. Wong‐Foy, A. J. Matzger, Inorg. Chem. 2010, 49, 5271 – 5275;en_US
dc.identifier.citedreferenceC.‐C. Ji, J. Li, Y.‐Z. Li, Z.‐J. Guo, H.‐G. Zheng, CrystEngComm 2011, 13, 459;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.