Show simple item record

Detectability of CO2 flux signals by a space‐based lidar mission

dc.contributor.authorHammerling, Dorit M.en_US
dc.contributor.authorKawa, S. Randolphen_US
dc.contributor.authorSchaefer, Kevinen_US
dc.contributor.authorDoney, Scotten_US
dc.contributor.authorMichalak, Anna M.en_US
dc.date.accessioned2015-04-02T15:12:48Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03-16en_US
dc.identifier.citationHammerling, Dorit M.; Kawa, S. Randolph; Schaefer, Kevin; Doney, Scott; Michalak, Anna M. (2015). "Detectability of CO2 flux signals by a space‐based lidar mission." Journal of Geophysical Research: Atmospheres 120(5): 1794-1807.en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110893
dc.description.abstractSatellite observations of carbon dioxide (CO2) offer novel and distinctive opportunities for improving our quantitative understanding of the carbon cycle. Prospective observations include those from space‐based lidar such as the active sensing of CO2 emissions over nights, days, and seasons (ASCENDS) mission. Here we explore the ability of such a mission to detect regional changes in CO2 fluxes. We investigate these using three prototypical case studies, namely, the thawing of permafrost in the northern high latitudes, the shifting of fossil fuel emissions from Europe to China, and changes in the source/sink characteristics of the Southern Ocean. These three scenarios were used to design signal detection studies to investigate the ability to detect the unfolding of these scenarios compared to a baseline scenario. Results indicate that the ASCENDS mission could detect the types of signals investigated in this study, with the caveat that the study is based on some simplifying assumptions. The permafrost thawing flux perturbation is readily detectable at a high level of significance. The fossil fuel emission detectability is directly related to the strength of the signal and the level of measurement noise. For a nominal (lower) fossil fuel emission signal, only the idealized noise‐free instrument test case produces a clearly detectable signal, while experiments with more realistic noise levels capture the signal only in the higher (exaggerated) signal case. For the Southern Ocean scenario, differences due to the natural variability in the El Niño–Southern Oscillation climatic mode are primarily detectable as a zonal increase.Key PointsDetectability of regional changes in CO2 fluxes by space‐based lidarPermafrost thawing flux perturbation readily detectable by ASCENDS‐like missionSouthern Ocean ENSO‐related flux variability detectable as zonal changeen_US
dc.publisherNatl. Oceanic and Atmos. Admin.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherfossil fuel emissionsen_US
dc.subject.otherCO2 fluxesen_US
dc.subject.otherspace‐based lidaren_US
dc.subject.otherSouthern Oceanen_US
dc.subject.othersignal detectionen_US
dc.subject.otherpermafrost thawingen_US
dc.titleDetectability of CO2 flux signals by a space‐based lidar missionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110893/1/jgrd51945.pdf
dc.identifier.doi10.1002/2014JD022483en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceParazoo, N. C., A. S. Denning, S. R. Kawa, K. D. Corbin, R. S. Lokupitiya, and I. T. Baker ( 2008 ), Mechanisms for synoptic variations of atmospheric CO 2 in North America, South America and Europe, Atmos. Chem. Phys., 8, 7239 – 7254.en_US
dc.identifier.citedreferenceKuze, A., H. Suto, M. Nakajima, and T. Hamazaki ( 2009 ), Thermal and near infrared sensor for carbon observation Fourier‐transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716 – 6733, doi: 10.1364/AO.48.006716.en_US
dc.identifier.citedreferenceLaw, R. M., et al. ( 2008a ), TransCom model simulations of hourly atmospheric CO 2: Experimental overview and diurnal cycle results for 2002, Global Biogeochem. Cycles, 22, GB3009, doi: 10.1029/2007GB003050.en_US
dc.identifier.citedreferenceLaw, R. M., R. J. Matear, and R. J. Francey ( 2008b ), Comment on saturation of the Southern ocean CO 2 sink due to recent climate change, Science, 319, 570.en_US
dc.identifier.citedreferenceLe Quéré, C., M. R. Raupach, J. G. Canadell, and E. A. Marland ( 2009 ), Trends in the sources and sinks of carbon dioxide, Nat. Geosci., 2, 831 – 836.en_US
dc.identifier.citedreferenceLemke, P., et al. ( 2007 ), Changes in snow, ice and frozen ground, in Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceMao, J., and S. R. Kawa ( 2004 ), Sensitivity studies for space‐based measurement of atmospheric total column carbon dioxide by reflected sunlight, Appl. Opt., 43, 914 – 927.en_US
dc.identifier.citedreferenceMeredith, M. P., A. C. N. Garabato, A. M. Hogg, and R. Farneti ( 2012 ), Sensitivity of the overturning circulation in the southern ocean to decadal changes in wind forcing, J. Clim., 25, 99 – 110.en_US
dc.identifier.citedreferenceNational Research Council ( 2007 ), Earth Science and Applications From Space: National Imperatives for the Next Decade and Beyond, 456 pp., The National Acad. Press, Washington, D. C. 20001.en_US
dc.identifier.citedreferenceOlivier, J., G. Janssens‐Maenhout, and J. Peters ( 2012 ), Trends in Global CO 2 Emissions; 2012 Report, PBL Netherlands Environmental Assessment Agency; Ispra: Joint Research Centre, The Hague, Netherlands.en_US
dc.identifier.citedreferenceOlsen, S. C., and J. T. Randerson ( 2004 ), Differences between surface and column atmospheric CO 2 and implications for carbon cycle research, J. Geophys. Res., 109, D02301, doi: 10.1029/2003JD003968.en_US
dc.identifier.citedreferencePeters, G. P., G. Marland, C. L. Quéré, T. Boden, J. G. Canadell, and M. R. Raupach ( 2011 ), Rapid growth in CO 2 emissions after the 2008–2009 global financial crisis, Nat. Clim. Change, 2, 2 – 4.en_US
dc.identifier.citedreferenceRanderson, J. T., M. V. Thompson, C. M. Malmstrom, C. B. Field, and I. Y. Fung ( 1996 ), Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO 2, Global Biogeochem. Cycles, 10 ( 4 ), 585 – 602, doi: 10.1029/96GB01981.en_US
dc.identifier.citedreferenceRienecker, M. M., et al. ( 2011 ), MERRA: NASA's Modern‐Era retrospective analysis for research and applications, J. Clim., 24, 3624 – 3648.en_US
dc.identifier.citedreferenceSchaaf, C. B., et al. ( 2002 ), First operational BRDF, albedo nadir reflectance products from MODIS, Remote Sens. Environ., 83 ( 1–2 ), 135 – 148, doi: 10.1016/S0034-4257(02)00091-3.en_US
dc.identifier.citedreferenceSchaefer, K., G. J. Collatz, P. Tans, A. S. Denning, I. Baker, J. Berry, L. Prihodko, N. Suits, and A. Philpott ( 2008 ), combined simple biosphere/Carnegie‐Ames‐Stanford approach terrestrial carbon cycle model, J. Geophys. Res., 113, G03034, doi: 10.1029/2007JG000603.en_US
dc.identifier.citedreferenceSchaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett ( 2011 ), Amount and timing of permafrost carbon release in response to climate warming, Tellus B, 63, 165 – 180, doi: 10.1111/j.1600-0889.2011.00527.x.en_US
dc.identifier.citedreferenceShiga, Y. P., A. M. Michalak, S. R. Kawa, and R. J. Engelen ( 2013 ), In‐situ CO 2 monitoring network evaluation and design: A criterion based on atmospheric CO 2 variability, J. Geophys. Res. Atmos., 118, 2007 – 2018, doi: 10.1002/jgrd.50168.en_US
dc.identifier.citedreferenceSpiers, G. D., R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell ( 2011 ), Atmospheric CO 2 measurements with a 2 µm airborne laser absorption spectrometer employing coherent detection, Appl. Opt., 50, 2098 – 2111, doi: 10.1364/AO.50.002098.en_US
dc.identifier.citedreferenceTakahashi, T., et al. ( 2002 ), Global sea‐air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects, Deep Sea Res., Part II, 49 ( 9–10 ), 1601 – 1622, doi: 10.1016/S0967-0645(02)00003-6.en_US
dc.identifier.citedreferenceTarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov ( 2009 ), Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 23, GB2023, doi: 10.1029/2008GB003327.en_US
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11,707 – 11,735, doi: 10.5194/acp-10-11707-2010.en_US
dc.identifier.citedreferenceYokota, T., Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov ( 2009 ), Global concentrations of CO 2 and CH 4 retrieved from GOSAT: First preliminary results, SOLA, 5, 160 – 163, doi: 10.2151/sola.2009-041.en_US
dc.identifier.citedreferenceZhang, T., R. G. Barry, K. Knowles, J. A. Heginbottom, and J. Brown ( 1999 ), Statistics and characteristics of permafrost and ground‐ice distribution in the Northern Hemisphere, Polar Geogr., 23 ( 2 ), 132 – 154.en_US
dc.identifier.citedreferenceZimov, S. A., E. A. G. Schuur, and F. S. Chapin III ( 2006 ), Permafrost and the Global Carbon Budget, Science, 312 ( 5780 ), 1612 – 1613, doi: 10.1126/science.1128908, 16 June.en_US
dc.identifier.citedreferenceAbshire, J. B., H. Riris, G. R. Allan, C. J. Weaver, J. Mao, X. Sun, W. E. Hasselbrack, S. R. Kawa, and S. Biraud ( 2010 ), Pulsed airborne lidar measurements of atmospheric CO 2 column absorption, Tellus B, 62, 770 – 783, doi: 10.1111/j.1600-0889.2010.00502.x.en_US
dc.identifier.citedreferenceAndres, R. J., T. A. Boden, and G. Marland ( 2009 ), Monthly Fossil‐Fuel CO 2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude, Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tenn., 37831‐6290.en_US
dc.identifier.citedreferenceAndres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden ( 2011 ), Monthly, global emissions of carbon dioxide from fossil fuel consumption, Tellus B, 63, 309 – 327, doi: 10.1111/j.1600-0889.2011.00530.x.en_US
dc.identifier.citedreferenceASCENDS Workshop Steering Committee ( 2008 ), Active Sensing of CO 2 Emissions over Nights, Days, and Seasons (ASCENDS) Mission NASA Science Definition and Planning Workshop Report, 1–78.en_US
dc.identifier.citedreferenceBaker, D. F., H. Bösch, S. C. Doney, D. O'Brien, and D. S. Schimel ( 2010 ), Carbon source/sink information provided by column CO 2 measurements from the orbiting carbon observatory, Atmos. Chem. Phys., 10, 4145 – 4165, doi: 10.5194/acp-10-4145-2010.en_US
dc.identifier.citedreferenceBian, H., S. R. Kawa, M. Chin, S. Pawson, Z. Zhu, P. Rasch, and S. Wu ( 2006 ), A test of sensitivity to convective transport in a global atmospheric CO 2 simulation, Tellus B, 58, 463 – 475, doi: 10.1111/j.1600-0889.2006.00212.x.en_US
dc.identifier.citedreferenceBrown, J., O. J. Ferrians Jr., J. A. Heginbottom, and E. S. Melnikov ( 1998 ), Circum‐arctic map of permafrost and ground ice conditions, Natl. Snow and Ice Data Cent., Digital media, Boulder, Colo. [Revised February 2001.]en_US
dc.identifier.citedreferenceCanadell, J. G., C. L. Quéré, M. R. Raupach, C. B. Field, E. T. Buitenhuis, P. Ciais, T. J. Conway, N. P. Gillett, R. A. Houghton, and G. Marland ( 2010 ), Carbon sciences for a new world, Curr. Opin. Environ. Sustainability, 2.en_US
dc.identifier.citedreferenceChatterjee, A., A. M. Michalak, J. L. Anderson, K. L. Mueller, and V. Yadav ( 2012 ), Toward reliable ensemble Kalman filter estimates of CO 2 fluxes, J. Geophys. Res., 117, D22306, doi: 10.1029/2012JD018176.en_US
dc.identifier.citedreferenceCrisp, D., et al. ( 2004 ), The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700 – 709, doi: 10.1016/j.asr.2003.08.062.en_US
dc.identifier.citedreferenceDisney, M. I., P. E. Lewis, M. Bouvet, A. Prieto‐Blanco, and S. Hancock ( 2009 ), Quantifying surface reflectivity for spaceborne lidar via two independent methods, IEEE Trans. Geosci. Remote Sens., 47, 3262 – 3271.en_US
dc.identifier.citedreferenceDoney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof ( 2009 ), Mechanisms governing interannual variability in upper‐ocean inorganic carbon system and air‐sea CO 2 fluxes: Physical climate and atmospheric dust, Deep Sea Res., Part II, 56 ( 8–10 ), 640 – 655, doi: 10.1016/j.dsr2.2008.12.006.en_US
dc.identifier.citedreferenceEhret, G., C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling ( 2008 ), Space‐borne remote sensing of CO 2, CH 4, and N 2 O by integrated path differential absorption lidar: A sensitivity analysis, Appl. Phys. B, 90, 593 – 608, doi: 10.1007/s00340-007-2892-3.en_US
dc.identifier.citedreferenceField, C. B., J. Sarmiento, and B. Hales ( 2007 ), The carbon cycle of North America in a global context, in The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, edited by A. W. King et al., pp. 21 – 28, Natl. Oceanic and Atmos. Admin., Natl. Clim. Data Cent., Asheville, N. C.en_US
dc.identifier.citedreferenceGruber, N., et al. ( 2009 ), Oceanic sources, sinks, and transport of atmospheric CO 2, Global Biogeochem. Cycles, 23, GB1005, doi: 10.1029/2008GB003349.en_US
dc.identifier.citedreferenceHammerling, D. M., A. M. Michalak, and S. R. Kawa ( 2012a ), Mapping of CO 2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO‐2, J. Geophys. Res., 117, D06306, doi: 10.1029/2011JD017015.en_US
dc.identifier.citedreferenceHammerling, D. M., A. M. Michalak, C. O'Dell, and S. R. Kawa ( 2012b ), Global CO 2 distributions over land from the Greenhouse Gases Observing Satellite (GOSAT), Geophys. Res. Lett., 39, L08804, doi: 10.1029/2012GL051203.en_US
dc.identifier.citedreferenceHu, Y., et al. ( 2008 ), Sea surface wind speed estimation from space‐based lidar measurements, Atmos. Chem. Phys., 8, 3593 – 3601, doi: 10.5194/acp-8-3593-2008.en_US
dc.identifier.citedreferenceKawa, S. R., D. J. Erickson III, S. Pawson, and Z. Zhu ( 2004 ), Global CO 2 transport simulations using meteorological data from the NASA data assimilation system, J. Geophys. Res., 109, D18312, doi: 10.1029/2004JD004554.en_US
dc.identifier.citedreferenceKawa, S. R., J. Mao, J. B. Abshire, G. J. Collatz, X. Sun, and C. J. Weaver ( 2010 ), Simulation studies for a space‐based CO 2 lidar mission, Tellus B, 62, 759 – 769, doi: 10.1111/j.1600-0889.2010.00486.x.en_US
dc.identifier.citedreferenceKiemle, C., S. R. Kawa, M. Quatrevalet, and E. V. Browell ( 2014 ), Performance simulations for a spaceborne methane lidar mission, J. Geophys. Res. Atmos., 119, 4365 – 4379, doi: 10.1002/2013JD021253.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.