Show simple item record

A Scalable Biomimetic Synthesis of Resveratrol Dimers and Systematic Evaluation of their Antioxidant Activities

dc.contributor.authorMatsuura, Bryan S.en_US
dc.contributor.authorKeylor, Mitchell H.en_US
dc.contributor.authorLi, Boen_US
dc.contributor.authorLin, YuXuanen_US
dc.contributor.authorAllison, Shelbyen_US
dc.contributor.authorPratt, Derek A.en_US
dc.contributor.authorStephenson, Corey R. J.en_US
dc.date.accessioned2015-04-02T15:12:49Z
dc.date.available2016-05-10T20:26:28Zen
dc.date.issued2015-03-16en_US
dc.identifier.citationMatsuura, Bryan S.; Keylor, Mitchell H.; Li, Bo; Lin, YuXuan; Allison, Shelby; Pratt, Derek A.; Stephenson, Corey R. J. (2015). "A Scalable Biomimetic Synthesis of Resveratrol Dimers and Systematic Evaluation of their Antioxidant Activities." Angewandte Chemie International Edition 54(12): 3754-3757.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/110895
dc.description.abstractAn efficient synthetic route to the resveratrol oligomers quadrangularin A and pallidol is reported. It features a scalable biomimetic oxidative dimerization that proceeds in excellent yield and with complete regioselectivity. A systematic evaluation of the natural products and their synthetic precursors as radical‐trapping antioxidants has revealed that, contrary to popular belief, this mode of action is unlikely to account for their observed biological activity.Persistence pays off: A concise synthesis of the resveratrol oligomers quadrangularin A and pallidol was achieved by leveraging the persistence of 2,6‐di‐tert‐butyl phenol derived radical and quinone methide intermediates. Evaluation of these compounds as radical‐trapping antioxidants is presented and the results demonstrate that this mode of action is unlikely to account for the observed biological activity.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherresveratrolen_US
dc.subject.othertotal synthesisen_US
dc.subject.otherbiomimetic synthesisen_US
dc.subject.otherantioxidantsen_US
dc.subject.otherquinone methidesen_US
dc.titleA Scalable Biomimetic Synthesis of Resveratrol Dimers and Systematic Evaluation of their Antioxidant Activitiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110895/1/anie_201409773_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/110895/2/3754_ftp.pdf
dc.identifier.doi10.1002/anie.201409773en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322 – 5363.en_US
dc.identifier.citedreferenceT. Rajendran, P. Thanasekaran, S. Rajagopal, G. A. Gnanaraj, C. Srinivasan, P. Ramamurthy, B. Venkatachalapathy, B. Manimaran, K.‐L. Lu, Phys. Chem. Chem. Phys. 2001, 3, 2063 – 2069.en_US
dc.identifier.citedreferenceN. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877 – 910.en_US
dc.identifier.citedreferenceH. L. Gordon, S. Freeman, T. Hudlicky, Synlett 2005, 2911 – 2914.en_US
dc.identifier.citedreferenceS. A. Saleh, H. I. Tashtoush, Tetrahedron 1998, 54, 14157 – 14177.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. Yoshino, Y. Tsuchiya, I. Saito, M. Tsujii, Chem. Pharm. Bull. 1987, 35, 3438 – 3441;en_US
dc.identifier.citedreferenceK. Okano, K. Okuyama, T. Fukuyama, H. Tokuyama, Synlett 2008, 1977 – 1980.en_US
dc.identifier.citedreferenceM. M. Toteva, J. P. Richard, in Adv. Phys. Org. Chem. (Ed.: J. P. Richard ), Academic Press, San Diego, 2011, pp.  39 – 91.en_US
dc.identifier.citedreferenceO. Corduneanu, P. Janeiro, A. M. O. Brett, Electroanalysis 2006, 18, 757 – 762.en_US
dc.identifier.citedreferenceN. A. Porter, Acc. Chem. Res. 1986, 19, 262 – 268;en_US
dc.identifier.citedreferenceH. Yin, L. Xu, N. A. Porter, Chem. Rev. 2011, 111, 5944 – 5972.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceB. Roschek, K. A. Tallman, C. L. Rector, J. G. Gillmore, D. A. Pratt, C. Punta, N. A. Porter, J. Org. Chem. 2006, 71, 3527 – 3532;en_US
dc.identifier.citedreferenceD. A. Pratt, K. A. Tallman, N. A. Porter, Acc. Chem. Res. 2011, 44, 458 – 467.en_US
dc.identifier.citedreferenceR. Amorati, F. Ferroni, G. F. Pedulli, L. Valgimigli, J. Org. Chem. 2003, 68, 9654 – 9658.en_US
dc.identifier.citedreferenceG. W. Burton, K. U. Ingold, Acc. Chem. Res. 1986, 19, 194 – 201.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. Krumova, S. Friedland, G. Cosa, J. Am. Chem. Soc. 2012, 134, 10102 – 10113;en_US
dc.identifier.citedreferenceB. Li, J. R. Harjani, N. S. Cormier, H. Madarati, J. Atkinson, G. Cosa, D. A. Pratt, J. Am. Chem. Soc. 2013, 135, 1394 – 1405.en_US
dc.identifier.citedreferenceL. R. C. Barclay, Can. J. Chem. 1993, 71, 1 – 16.en_US
dc.identifier.citedreferenceE. Niki, N. Noguchi, Acc. Chem. Res. 2004, 37, 45 – 51.en_US
dc.identifier.citedreferenceIt has been suggested that resveratrol can prevent lipid peroxidation by the same mechanism by which ascorbate does: the regeneration of α‐TOH from α‐TO⋅. Valgimigli (Ref. [28]) has shown this equilibrium to be unfavourable, and we would expect the same for 2 and 3 given their similar reactivities.en_US
dc.identifier.citedreferenceR. Amorati, F. Ferroni, M. Lucarini, G. F. Pedulli, L. Valgimigli, J. Org. Chem. 2002, 67, 9295 – 9303.en_US
dc.identifier.citedreferenceFang et al. (Ref. [30]) reported that resveratrol possesses only 3‐fold lower inhibitory activity than α‐TOH for the peroxidation of linoleic acid in CTAB and SDS micelles initiated with a water‐soluble azo initiator. Obviously there is a difference between micelles composed of these detergents and liposomes composed of a single bilayer formed from physiological lipids.en_US
dc.identifier.citedreferenceJ.‐G. Fang, M. Lu, Z.‐H. Chen, H.‐H. Zhu, Y. Li, L. Yang, L.‐M. Wu, Z.‐L. Liu, Chem. Eur. J. 2002, 8, 4191 – 4198.en_US
dc.identifier.citedreferenceG. P. C. Drummen, L. C. M. van Liebergen, J. A. F. Op den Kamp, J. A. Post, Free Radical Biol. Med. 2002, 33, 473 – 490.en_US
dc.identifier.citedreferenceH. J. Forman, K. J. Davies, F. Ursini, Free Radical Biol. Med. 2014, 66, 24 – 35.en_US
dc.identifier.citedreferenceSee Supporting Information for experimental details.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceR. H. Cichewicz, S. A. Kouzi, in Stud. Nat. Prod. Chem. (Ed.: Atta‐ur‐Rahman ), Elsevier, Amsterdam, 2002, pp.  507 – 579;en_US
dc.identifier.citedreferenceK. Xiao, H.‐J. Zhang, L.‐J. Xuan, J. Zhang, Y.‐M. Xu, D.‐L. Bai, in Stud. Nat. Prod. Chem. (Ed.: Atta‐ur‐Rahman ), Elsevier, Amsterdam, 2008, pp.  453 – 646.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. A. Baur, D. A. Sinclair, Nat. Rev. Drug Discovery 2006, 5, 493 – 506;en_US
dc.identifier.citedreferenceY.‐Q. Xue, J.‐M. Di, Y. Luo, K.‐J. Cheng, X. Wei, Z. Shi, Oxid. Med. Cell. Longev. 2014, 2014, e 765832.en_US
dc.identifier.citedreferenceK. U. Ingold, D. A. Pratt, Chem. Rev. 2014, 114, 9022 – 9046.en_US
dc.identifier.citedreferenceFor reviews, see:en_US
dc.identifier.citedreferenceS. A. Snyder, A. M. ElSohly, F. Kontes, Nat. Prod. Rep. 2011, 28, 897 – 924;en_US
dc.identifier.citedreferenceS. S. Velu, N. F. Thomas, J.‐F. F. Weber, Curr. Org. Chem. 2012, 16, 605 – 662.en_US
dc.identifier.citedreferenceFor syntheses of quadrangularin A and pallidol, see:en_US
dc.identifier.citedreferenceW. Li, H. Li, Y. Li, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 7609 – 7611; Angew. Chem. 2006, 118, 7771 – 7773;en_US
dc.identifier.citedreferenceS. A. Snyder, A. L. Zografos, Y. Lin, Angew. Chem. Int. Ed. 2007, 46, 8186 – 8191; Angew. Chem. 2007, 119, 8334 – 8339;en_US
dc.identifier.citedreferenceS. A. Snyder, S. P. Breazzano, A. G. Ross, Y. Lin, A. L. Zografos, J. Am. Chem. Soc. 2009, 131, 1753 – 1765;en_US
dc.identifier.citedreferenceW. Li, H. Li, Y. Luo, Y. Yang, N. Wang, Synlett 2010, 1247 – 1250;en_US
dc.identifier.citedreferenceC. Zhong, J. Zhu, J. Chang, X. Sun, Tetrahedron Lett. 2011, 52, 2815 – 2817;en_US
dc.identifier.citedreferenceF. Klotter, A. Studer, Angew. Chem. Int. Ed. 2014, 53, 2473 – 2476; Angew. Chem. 2014, 126, 2505 – 2509.en_US
dc.identifier.citedreferenceFor selected syntheses of other resveratrol dimers and analogues, see:en_US
dc.identifier.citedreferenceK. C. Nicolaou, T. R. Wu, Q. Kang, D. Y.‐K. Chen, Angew. Chem. Int. Ed. 2009, 48, 3440 – 3443; Angew. Chem. 2009, 121, 3492 – 3495;en_US
dc.identifier.citedreferenceJ. L. Jeffrey, R. Sarpong, Tetrahedron Lett. 2009, 50, 1969 – 1972;en_US
dc.identifier.citedreferenceS. A. Snyder, N. E. Wright, J. J. Pflueger, S. P. Breazzano, Angew. Chem. Int. Ed. 2011, 50, 8629 – 8633; Angew. Chem. 2011, 123, 8788 – 8792;en_US
dc.identifier.citedreferenceS. A. Snyder, S. B. Thomas, A. C. Mayer, S. P. Breazzano, Angew. Chem. Int. Ed. 2012, 51, 4080 – 4084; Angew. Chem. 2012, 124, 4156 – 4160;en_US
dc.identifier.citedreferenceC. Soldi, K. N. Lamb, R. A. Squitieri, M. González‐López, M. J. Di Maso, J. T. Shaw, J. Am. Chem. Soc. 2014, 136, 15142 – 15145.en_US
dc.identifier.citedreferenceFor the synthesis of trimeric and tetrameric resveratrol oligomers:en_US
dc.identifier.citedreferenceS. A. Snyder, A. Gollner, M. I. Chiriac, Nature 2011, 474, 461 – 466;en_US
dc.identifier.citedreferenceN. E. Wright, S. A. Snyder, Angew. Chem. Int. Ed. 2014, 53, 3409 – 3413; Angew. Chem. 2014, 126, 3477 – 3481;en_US
dc.identifier.citedreferenceT. H. Jepsen, S. B. Thomas, Y. Lin, C. I. Stathakis, I. de Miguel, S. A. Snyder, Angew. Chem. Int. Ed. 2014, 53, 6747 – 6751; Angew. Chem. 2014, 126, 6865 – 6869.en_US
dc.identifier.citedreferenceM. A. Khan, S. G. Nabi, S. Prakash, A. Zaman, Phytochemistry 1986, 25, 1945 – 1948.en_US
dc.identifier.citedreferenceS. A. Adesanya, R. Nia, M.‐T. Martin, N. Boukamcha, A. Montagnac, M. Païs, J. Nat. Prod. 1999, 62, 1694 – 1695.en_US
dc.identifier.citedreferenceOxidative cleavage of the stilbene in the absence of the photocatalyst suggested that the phenoxide of 4 b may be acting as a singlet‐oxygen sensitizer. When the reaction was run in the dark and open to air in the absence of the photocatalyst, the yield of the isolated dimer 5 increased to 55 %. Taken together, these results suggest that the conjugate base of 4 b was reducing O 2 under the reaction conditions.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.