Show simple item record

Structural Modifications of Proteins During Aging

dc.contributor.authorGafni, Arien_US
dc.date.accessioned2015-05-04T20:36:10Z
dc.date.available2015-05-04T20:36:10Z
dc.date.issued1997-07en_US
dc.identifier.citationGafni, Ari (1997). "Structural Modifications of Proteins During Aging." Journal of the American Geriatrics Society 45(7).en_US
dc.identifier.issn0002-8614en_US
dc.identifier.issn1532-5415en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/111120
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleStructural Modifications of Proteins During Agingen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInstitute of Gerontology and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/111120/1/j.1532-5415.1997.tb01518.x.pdf
dc.identifier.doi10.1111/j.1532-5415.1997.tb01518.xen_US
dc.identifier.sourceJournal of the American Geriatrics Societyen_US
dc.identifier.citedreferenceYuh KCM, Garni A. Reversal of age‐related effects in rat muscle phosphoglycerate kinase. Proc Natl Acad Sci USA 1987; 84: 7458 – 7462.en_US
dc.identifier.citedreferenceLorenzo A, Razzaboni B, Weir GC, Yankner BA. Pancreatic islet cell toxicity of amylin associated with type‐2 diabetes mellitus. Nature 1994; 368: 756 – 760.en_US
dc.identifier.citedreferenceCharge SB, de Koning EJ, Clark A. Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry 1995; 34: 14588 – 14593.en_US
dc.identifier.citedreferenceCooper GJ, Day AJ, Willis AC et al. Amylin and the amylin gene: Structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim Biophys Acta 1989; 1014: 247 – 258.en_US
dc.identifier.citedreferenceBlake CCF, Geisow MJ, Oatley SJ. Structure of prealbumin (transthyretin): Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol 1978; 121: 339 – 356.en_US
dc.identifier.citedreferenceColon W, Kelly JW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 1992; 31: 8654 – 8660.en_US
dc.identifier.citedreferenceLai Z, Colon W, Kelly JW. The acid‐mediated denaturation of transthyretin proceeds through an intermediate that partitions into amyloid. Biochemistry 1996; 35: 6470 – 6482.en_US
dc.identifier.citedreferenceHensley K, Butterfield DA, Mattson M et al. A model for beta‐amyloid aggregation and neurotoxicity based on the free radical generating capacity of the peptide: Implications of “molecular shrapnel” for Alzheimer's disease. Proc West Pharmacol Soc 1995; 38: 113 – 120.en_US
dc.identifier.citedreferenceBhattacharya K, Glendening JM, Stopa E et al. Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 4766 – 4770.en_US
dc.identifier.citedreferenceHorwitz J. Alpha crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 1992; 89: 10449 – 10453.en_US
dc.identifier.citedreferenceHendrick JP, Hartl FU. Molecular chaperone functions of heat shock proteins. Annu Rev Biochem 1993; 62: 349 – 384.en_US
dc.identifier.citedreferenceChrunyk BA, Evans J, Wetzel R. Probing the role of protein folding in inclusion body formation. In: Cleland JL, ed. Protein Folding in Vivo and in Vitro. Washington, DC: American Chemical Society, 1993, pp 46 – 58.en_US
dc.identifier.citedreferenceHeydari AR, Takahashi R, Gutsmann A et al. Hsp 70 and aging. Experientia 1994; 50: 1092 – 1098.en_US
dc.identifier.citedreferencePahlavani MA, Harris MD, Moore SA et al. The expression of heat shock protein 70 decreases with age in lymphocytes from rats and rhesus monkeys. Exp Cell Res 1995; 218: 310 – 318.en_US
dc.identifier.citedreferenceKregel KC, Moseley PL, Skidmore R et al. Hsp 70 accumulation in tissues of heat‐stressed rats is blunted with advancing age. J Appl Physiol 1995; 79: 1673 – 1678.en_US
dc.identifier.citedreferenceFargnoli J, Kunisada T, Fornace AJ et al. Decreased expression of heat shock protein 70 mRNA and protein after heat treatment in cells of aged rats. Proc Natl Acad Sci USA 1990; 87: 846 – 850.en_US
dc.identifier.citedreferenceVijg J, Wei JY. Understanding the biology of aging: The key to prevention and therapy. J Am Geriatr Soc 1995; 43: 426 – 434.en_US
dc.identifier.citedreferenceMartin GR, Austad SN, Johnson TE. Genetic analysis of aging: Role of oxidative damage and environmental stresses. Nature Genet 1996; 13: 25 – 34.en_US
dc.identifier.citedreferenceMartin GR, Danner DB, Holbrook NJ. Aging‐causes and defenses. Annu Rev Med 1993; 44: 419 – 429.en_US
dc.identifier.citedreferenceRose MR. Evolutionary Biology of Aging. New York: Oxford University Press, 1991.en_US
dc.identifier.citedreferenceMasoro EJ, Austed SN. The evolution of the anti‐aging action of dietary restriction. J Gerontol 1996; 51A: B387 – 391.en_US
dc.identifier.citedreferenceJohnson TE, Lithgow GJ, Murakami S. Hypothesis: Interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J Gerontol 1996; 51A: B392 – 395.en_US
dc.identifier.citedreferenceStryer L. Biochemistry. New York: WH Freeman, 1995.en_US
dc.identifier.citedreferenceAnfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181: 223 – 230.en_US
dc.identifier.citedreferenceRichards FM. The protein folding problem. Sci Am 1991; 264: 54 – 57.en_US
dc.identifier.citedreferenceCreighton TE, ed. Protein Folding. New York: WH Freeman, 1992.en_US
dc.identifier.citedreferencePain RH, ed. Mechanisms of Protein Folding. New York: Oxford University Press, 1994.en_US
dc.identifier.citedreferencePtitsyn OB. Protein folding overview: A determinable but unresolved problem. FASEB J 1996; 10: 3 – 5.en_US
dc.identifier.citedreferenceEllis RJ, van der Vies SM. Molecular chaperones. Annu Rev Biochem 1991; 60: 321 – 347.en_US
dc.identifier.citedreferenceBuchner J. Supervising the fold: Functional principles of molecular chaperones. FASEBJ 1996; 10: 10 – 19.en_US
dc.identifier.citedreferenceEllis RJ, Hartl FU. Protein folding in the cell: Competing models of chaperonin function. FASEBJ 1996; 10: 20 – 26.en_US
dc.identifier.citedreferenceThomas PJ, Qu BH, Pedersen PL. Defective protein folding as a basis of human disease. Trends Biochem Sci 1995; 20: 456 – 459.en_US
dc.identifier.citedreferenceMcCutchen SI‐, Colon W, Kelly JW. Transthyretin mutation Leu‐55‐Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry 1993; 32: 12119 – 12127.en_US
dc.identifier.citedreferenceBruce D, Perry DJ, Borg J Y et al. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen‐VI. J Clin Invest 1994; 94: 2265 – 2274.en_US
dc.identifier.citedreferenceMcCutchen SL, Lai Z, Miroy G et al. Comparison of lethal and non‐lethal transthyretin variants and their relationship to amyloid disease. Biochemistry 1995; 34: 13527 – 13536.en_US
dc.identifier.citedreferenceGafni A. Altered protein metabolism in aging. Annu Rev Gerontol Geriatr 1991; 10: 117 – 131.en_US
dc.identifier.citedreferenceGafni A. Age‐related effects in enzyme metabolism and catalysis. Rev Biol Res Aging 1990; 4: 315 – 336.en_US
dc.identifier.citedreferenceRattan SIS, Derventzi A, Clark BFC. Protein synthesis, posttranslational modifications, and aging. Ann NY Acad Sci 1992; 663: 48 – 62.en_US
dc.identifier.citedreferenceStadtman ER. Protein modification in aging. J Gerontol 1988; 43: B112 – 120.en_US
dc.identifier.citedreferenceStadtman ER, Oliver CN, Starke‐Reed PE, Rhee SG. Age‐related oxidation reaction in proteins. Toxicol Ind Health 1993; 9: 187 – 196.en_US
dc.identifier.citedreferenceRothstein M. Age‐related changes in enzyme levels and enzyme properties. Rev Biol Res Aging 1985; 2: 421 – 433.en_US
dc.identifier.citedreferenceGershon H, Gershon D. Detection of inactive enzyme molecules in aging organisms. Nature 1970; 227: 1214 – 1218.en_US
dc.identifier.citedreferenceGafni A. Age‐related modifications in a muscle enzyme. In: Modifications of Proteins During Aging. RC Adelman, EE Dekker, eds. New York: Alan R Liss, 1985, pp 19 – 39.en_US
dc.identifier.citedreferenceGordillo E, Ayala A, F‐Lobato M et al. Possible involvement of histidine residues in the loss of enzymatic activity of rat liver malic enzyme during aging. J Biol Chem 1988; 263: 8053 – 8057.en_US
dc.identifier.citedreferenceReiss U, Rothstein M. Heat labile isozymes of isocitrate lyase from aging Turbatrix aceti. Biochem Biophys Res Commun 1974; 61: 1012 – 1016.en_US
dc.identifier.citedreferenceSharma HK, Prasanna HR, Rothstein M. Altered phosphoglycerate kinase in aging rats. J Biol Chem 1980; 255: 5043 – 5050.en_US
dc.identifier.citedreferenceGafni A. Molecular origin of the aging effects in glyceraldehyde‐3‐phosphate dehydrogenase. Biochim Biophys Acta 1983; 742: 91 – 99.en_US
dc.identifier.citedreferenceDovrat A, Scharf J, Eisenbach L, Gershon D. Glucose‐6‐phosphate dehydrogenase molecules devoid of catalytic activity are present in the nucleus of the rat lens. Exp Eye Res 1986; 42: 489 – 496.en_US
dc.identifier.citedreferenceReiss U, Sacktor B. Monoclonal antibodies to renal brush border membrane maltase: Age‐related antigenic alterations. Proc Natl Acad Sci USA 1983; 80: 3255 – 3260.en_US
dc.identifier.citedreferenceOrgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci USA 1963; 49: 517 – 521.en_US
dc.identifier.citedreferenceOrgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging: A correction. Proc Natl Acad Sci USA 1970; 67: 1476.en_US
dc.identifier.citedreferenceAmes BN, Sigenaga MK, Hagen TM. Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993; 90: 7915 – 7922.en_US
dc.identifier.citedreferenceWang K, Spector A. Alpha‐crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci 1995; 36: 311 – 321.en_US
dc.identifier.citedreferenceHarman D. Aging: A theory based on free radical and radiation chemistry. J Gerontol 1956; 11: 298 – 300.en_US
dc.identifier.citedreferenceHarman D. Free radicals in aging. Mol Cell Biochem 1988; 84: 155 – 161.en_US
dc.identifier.citedreferenceCarney JM, Carney AM. Role of protein oxidation in aging and in age‐associated neurodegenerative diseases. Life Sci 1994; 55: 2097 – 2103.en_US
dc.identifier.citedreferenceAgarwal S, Sohal RS. Relationship between aging and susceptibility to protein oxidative damage. Biochem Biophys Res Commun 1993; 194: 1203 – 1206.en_US
dc.identifier.citedreferenceDean RT, Gebicki J, Gieseg S et al. Hypothesis: A damaging role in aging for reactive protein oxidation products? Mutat Res 1992; 275: 387 – 393.en_US
dc.identifier.citedreferenceSmith CD, Carney JM, Tatsumo T et al. Protein oxidation in aging brain. Ann NY Acad Sci 1992; 663: 110 – 119.en_US
dc.identifier.citedreferenceStadtman ER. Role of oxidized amino acids in protein breakdown and stability. Methods Enzymol 1995; 258: 379 – 393.en_US
dc.identifier.citedreferenceDavies KJ. Protein modification by oxidants and the role of proteolytic enzymes. Biochem Soc Trans 1993; 21: 346 – 353.en_US
dc.identifier.citedreferencePacifici RE, Davies KJ. Protein, lipid and DNA repair systems in oxidative stress: The free‐radical theory of aging revisited. Gerontology 1991; 37: 166 – 180.en_US
dc.identifier.citedreferenceKritchevsky SB, Muldoon MF. Oxidative stress and aging: Still a hypothesis. J Am Geriatr Soc 1996; 44: 873 – 875.en_US
dc.identifier.citedreferenceDavies KJ. Oxidative stress: The paradox of aerobic life. Biochem Soc Symp 1995; 61: 1 – 31.en_US
dc.identifier.citedreferencePacifici RE, Davies KJ. Protein degradation as an index of oxidative stress. Methods Enzymol 1990; 186: 485 – 502.en_US
dc.identifier.citedreferenceConconi M, Szweda LI, Levine RL et al. Age‐related decline of rat liver multicatalytic proteinase activity and protection from oxidative inactivation by heat‐shock protein 90. Arch Biochem Biophys 1996; 331: 232 – 240.en_US
dc.identifier.citedreferenceTatsmo T, Stadtman ER, Floyd RA, Markesbery WR. Protein oxidation in aging brain. Ann NY Acad Sci 1992; 663: 110 – 119.en_US
dc.identifier.citedreferenceStadtman ER. Metal‐ion catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radic Biol Med 1990; 9: 315 – 325.en_US
dc.identifier.citedreferenceOrr WC, Sohal RS. Relationship between antioxidants, prooxidants, and the aging process. Ann NY Acad Sci 1992; 663: 71 – 73.en_US
dc.identifier.citedreferenceStadtman ER. Protein oxidation and aging. Science 1992; 257: 1220 – 1224.en_US
dc.identifier.citedreferenceLevine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 1994; 233: 436 – 357.en_US
dc.identifier.citedreferenceStadtman ER. The status of oxidatively modified proteins as a marker of aging. In: Esser K, Martin GM, eds. Molecular Aspects of Aging. New York: John Wiley & Sons, 1995, pp 129 – 143.en_US
dc.identifier.citedreferenceBrownlee M. Advanced protein glycosylation in diabetes and aging. Ann Rev Med 1995; 46: 223 – 234.en_US
dc.identifier.citedreferenceMonnier VM, Sell DR, Miyata S, Nagara RH. The Maillard reaction as a basis for a theory of aging. In: Finot PA, ed. Proceedings of the 4th International Symposium on the Maillard Reaction. Basel: Birkhausert‐Verlag, 1993, pp 393 – 515.en_US
dc.identifier.citedreferenceKnecht KJ, Thorpe SR, Baynes JW. Role of oxygen in cross‐linking and chemical modification of collagen by glucose. Diabetes 1992; 41: 42 – 48.en_US
dc.identifier.citedreferenceWells‐Knecht KJ, Blackledge JA, Lyons TJ et al. Glycation, glycoxidation, and cross‐linking of collagen by glucose: Kinetics, mechanisms, and inhibition of late stages of the Maillard reaction. Diabetes 1994; 43: 676 – 683.en_US
dc.identifier.citedreferenceWells‐Knecht KJ, Zyzak DV, Litchfield JE et al. Mechanism of autoxidative glycosylation: Identification of glyoxaland arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry 1995; 34: 3702 – 3709.en_US
dc.identifier.citedreferenceLee AT, Cerami A. Role of glycation in aging. Ann NY Acad Sci 1992; 663: 63 – 70.en_US
dc.identifier.citedreferenceOimomi M, Kitamura Y, Nishimoto S et al. Age‐related acceleration of glycation of tissue proteins in rats. J Gerontol 1986; 41: 695 – 698.en_US
dc.identifier.citedreferenceMikski I, Deyl Z. Change in the amount of epsilon‐hexosyllysine UV absorbance and fluorescence of collagen with age in different animal species. J Gerontol 1991; 46: B111 – 116.en_US
dc.identifier.citedreferenceKohn RR, Cerami A, Monnier VM. Collagen aging in vitro by nonenzymatic glycosylation and browning. Diabetes 1984; 33: 57 – 59.en_US
dc.identifier.citedreferenceGarlick RL, Bunn HF, Spiro RG. Nonenzymatic glycation of basement membranes from human glomeruli and bovine sources: Effect of diabetes and aging. Diabetes 1988; 37: 1144 – 1155.en_US
dc.identifier.citedreferenceTanaka S, Avigad G, Brodsky B, Eikenberry EF. Glycation induces expansion of the molecular packing of collagen. J Mol Biol 1988; 203: 495 – 505.en_US
dc.identifier.citedreferenceBrownlee M, Pongor S, Cerami A. Covalent attachment of soluble protein by nonenzymatically glycosylated collagen: Role in the in situ formation of immune complexes. J Exp Med 1983; 158: 1739 – 1744.en_US
dc.identifier.citedreferenceSensi M, Tanzi B, Bruno RM, et al. Human glomerular basement membrane: Altered binding characteristics following in vitro non‐enzymatic glycosylation. Ann N Y Acad Sci 1986; 488: 549 – 552.en_US
dc.identifier.citedreferenceBrownlee M, Vlassara H, Cerami A. Non‐enzymatic glycosylation products of collagen covalently trap low‐density lipoprotein. Diabetes 1985; 34: 938 – 941.en_US
dc.identifier.citedreferenceTsilbary EC, Charonis AS, Reger LA et al. The effect of nonenzymatic glycosylation on the binding of the main noncollagenous NCI domain to type IV collagen. J Biol Chem 1988; 263: 4302 – 4308.en_US
dc.identifier.citedreferenceCharonis AS, Reger LA, Dege JE et al. Laminin alterations after in vitro nonenzymatic glycosylation. Diabetes 1990; 39: 807 – 814.en_US
dc.identifier.citedreferenceHogan M, Cerami A, Bucala R. Advanced glycosylation end products block the antiproliferative effect of nitric oxide. J Clin Invest 1992; 90: 1110 – 1115.en_US
dc.identifier.citedreferenceHarding JJ, Beswick HT, Ajiboye R et al. Non‐enzymic post‐translation modification of proteins in aging: A review. Mech Ageing Dev 1989; 50: 7 – 16.en_US
dc.identifier.citedreferencePatrick JS, Thorpe SR, Baynes JW. Nonenzymatic glycosylation of protein does not increase with age in human lenses. J Gerontol 1990; 45: B18 – 23.en_US
dc.identifier.citedreferencePerry RE, Swamy MS, Abraham EC. Progressive changes in lens crystallin glycation and high‐molecular weight aggregate formation leading to a cataract development in streptozotocin‐diabetes. Exp Eye Res 1987; 44: 269 – 282.en_US
dc.identifier.citedreferenceMakita Z, Vlassara H, Rayfield E et al. Hemoglobin‐AGE: A circulating marker of advanced glycosylation. Science 1992; 258: 651 – 653.en_US
dc.identifier.citedreferenceGanea E, Harding JJ. Inactivation of glucose‐6‐phosphate dehydrogenase by glycation. Biochem Soc Trans 1994; 22: 445S.en_US
dc.identifier.citedreferenceGanea E, Harding JJ. Molecular chaperones protect against glycation‐induced inactivation of giucose‐6‐phosphate dehydrogenase. Eur J Biochem 1995; 231: 181 – 185.en_US
dc.identifier.citedreferenceHeath MM, Rixon KC, Harding JJ. Glycation‐induced inactivation of malate dehydrogenase protection by aspirin and a lens molecular chaperone, alpha‐crystallin. Biochim Biophys Acta 1996; 1315: 176 – 184.en_US
dc.identifier.citedreferenceShilton BH, Walton DJ. Sites of glycation of human and horse liver alcohol dehydrogenase in vivo. J Biol Chem 1991; 266: 5587 – 5592.en_US
dc.identifier.citedreferenceHe RQ, Li YG, Wu XQ, Li L. Inactivation and conformational changes of the glycated and non‐glycated D‐glyceraldehyde‐3‐phosphate dehydrogenase during guanidine‐HCl denaturation. Biochim Biophys Acta 995; 1253: 47 – 56.en_US
dc.identifier.citedreferenceHe RQ, Yang MD, Zheng X, Zhou JX. Isolation and some properties of glycated D‐glyceraldehyde‐3‐phosphate dehydrogenase from rabbit muscle. Biochem J 1995; 309: 133 – 139.en_US
dc.identifier.citedreferenceSun AQ, Yuksel KU, Rao GS, Gracy RW. Effects of active site modification and reversible dissociation on the secondary structure of triosephosphate isomerase. Arch Biochem Biophys 1992; 295: 421 – 428.en_US
dc.identifier.citedreferenceSun AQ, Yuksel KU, Gracy RW. Relationship between the catalytic center and the primary degradation site of triosephosphate isomerase: Effects of active site modification and deamidation. Arch Biochem Biophys 1992; 293: 382 – 390.en_US
dc.identifier.citedreferenceSun AQ, Yuksel KU, Gracy RW. Terminal marking of triosephosphate isomerase: Consequences of deamidation. Arch Biochem Bophys 1995; 322: 361 – 368.en_US
dc.identifier.citedreferenceCini JK, Gracy RW. Molecular basis of the isozymes of bovine glucose‐6‐phosphate isomerase. Arch Biochem Biophys 1986; 249: 500 – 505.en_US
dc.identifier.citedreferenceGeiger T, Clarke S. Deamidation, isomerization and racemization at asparaginyl and aspartyl residues in proteins. J Biol Chem 1987; 262: 785 – 794.en_US
dc.identifier.citedreferenceClarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res 1987; 30: 808 – 821.en_US
dc.identifier.citedreferenceBrunauer LS, Clarke S. Age‐related accumulation of protein residues which can be hydrolyzed to D‐aspartic acid in human erythrocytes. J Biol Chem 1986; 261: 12538 – 12543.en_US
dc.identifier.citedreferenceOta IM, Ding L, Clarke S. Methylation at specific altered aspartyl and asparaginyl residues in glucagon by the erythrocyte protein carboxyl methyl‐transferase. J Biol Chem 1987; 262: 8522 – 8531.en_US
dc.identifier.citedreferenceMcfadden PN, Clarke S. Protein carboxyl methyltransferase and methyl, acceptor proteins in aging and cataractous tissue of the human eye lens. Mech Ageing Dev 1986; 34: 91 – 105.en_US
dc.identifier.citedreferenceRothstein M. The formation of altered enzymes in aging animals. Mech Ageing Dev 1979; 9: 197 – 202.en_US
dc.identifier.citedreferenceRothstein M. Biochemical Approaches to Aging. New York: Academic Press, 1982, pp 213 – 255.en_US
dc.identifier.citedreferenceRothstein M. Age‐related changes in enzyme levels and enzyme properties. In: Rothstein M, ed. Review of Biological Research in Aging, Vol 2. New York: Alan R Liss, pp 421 – 433.en_US
dc.identifier.citedreferenceSharma HK, Rothstein M. Age‐related changes in the properties of enolase from Turbatrix aceti. Biochemistry 1978; 17: 2869 – 2876.en_US
dc.identifier.citedreferenceSharma HK, Prasanna HR, Rothstein M. Altered phosphoglycerate kinase in aging rats. J Biol Chem 1980; 255: 5043 – 5050.en_US
dc.identifier.citedreferenceSharma HK, Rothstein M. Altered brain phosphoglycerate kinase from aging rats. Mech Ageing Dev 1984; 25: 285 – 296.en_US
dc.identifier.citedreferenceGafni A, Yuh KCM. Age‐related molecular changes in skeletal muscle. In: Snyder DL, ed. Dietary Restriction and Aging. New York: Alan R. Liss, 1989, pp 277 – 282.en_US
dc.identifier.citedreferenceHardt H, Rothstein M. Altered phosphoglycerate kinase from old rat muscle shows no change in primary structure. Biochim Biophys Acta 1985; 831: 13 – 21.en_US
dc.identifier.citedreferenceZuniga A, Gafni A. Age‐related modifications in rat cardiac phosphoglycerate kinase: Rejuvenation of the old enzyme by unfolding‐refolding. Biochim Biophys Acta 1988; 955: 50 – 57.en_US
dc.identifier.citedreferenceCook LL, Gafni A. Protection of phosphoglycerate kinase against in vitro aging by selective cysteine methylation. J Biol Chem 1988; 263: 13991 – 13993.en_US
dc.identifier.citedreferenceZhou JQ, White TP, Gafni A. Endurance‐training induced changes in skeletal muscle phosphoglycerate kinase of old wistar rats. Mech Ageing Dev 1990; 58: 163 – 175.en_US
dc.identifier.citedreferenceKelly JW. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 1996; 6: 11 – 17.en_US
dc.identifier.citedreferenceUemichi T, Liepnieks JJ, Benson MD. Hereditary renal amyloidosis with a novel variant fibrinogen. J Clin Invest 1994; 93: 731 – 736.en_US
dc.identifier.citedreferenceCohen AS. Proteins of the systemic amyloidoses. Curr Opin Rheumatol 1994; 6: 55 – 67.en_US
dc.identifier.citedreferenceKelly JW, Lansbury PT. A chemical approach to elucidate the mechanism of transthyretin and beta‐protein amyloid fibril formation. Amyloid 1994; 1: 186 – 205.en_US
dc.identifier.citedreferenceO'Brien TD, Butler PC, Westermark P, Johnson KH. Islet amyloid polypeptide: A review of its biology and potential roles in the pathogenesis of diabetes mellitus. Vet Pathol 1993; 30: 317 – 332.en_US
dc.identifier.citedreferenceEdwards BJA, Morley JE. Amylin. Life Sci 1992; 51: 1899 – 1912.en_US
dc.identifier.citedreferenceCome JH, Lansbury Jr PT. Predisposition of prion protein homozygotes to Creutzfeldt‐Jakob disease can be explained by a nucleation‐dependent polymerization mechanism. J Am Chem Soc 1994; 116: 4109 – 4110.en_US
dc.identifier.citedreferenceZhang H, Kaneko K, Nguyen JT et al. Conformational transitions in peptides containing two putative a‐helices of the prion protein. J Mol Biol 1995; 250: 514 – 526.en_US
dc.identifier.citedreferenceNguyen J, Baldwin MA, Cohen FE, Prusiner SB. Prion protein peptides induce alpha‐helice to beta sheet conformational transitions. Biochemistry 1995; 34: 4186 – 4192.en_US
dc.identifier.citedreferenceLee JP, Stimson ER, Ghilardi JR et al. H‐l NMR of A‐beta amyloid peptide congeners in water solution; Conformational changes correlate with plaque competence. Biochemistry 1995; 34: 5191 – 5200.en_US
dc.identifier.citedreferenceSimmons LK, May PC, Tomaaselli KJ et al. Secondary structure of amyloid β‐peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 1994; 45: 373 – 379.en_US
dc.identifier.citedreferenceSoto C, Frangione B. Two conformational states of the amyloid A‐beta peptide: Implications for the pathogenesis of Alzheimer's disease. Neurosci Lett 1999; 186: 115 – 118.en_US
dc.identifier.citedreferenceHowlett DR, Jennings KH, Lee DC et al. Aggregation state and neurotoxic properties of Alzheimer's beta‐amyloid peptide. Neurodegen 1995; 4: 23 – 32.en_US
dc.identifier.citedreferenceYanker BA, Dawes LR, Fisher S et al. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 1989; 245: 417 – 420.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.